Skip to main content

Approximating the Treewidth of AT-Free Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1928))

Included in the following conference series:

Abstract

Using the specific structure of the minimal separators of AT-free graphs, we give a polynomial time algorithm that computes a triangulation whose width is no more than twice the treewidth of the input graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. on Algebraic and Discrete Methods, 8:277–284, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating tree-width, pathwidth, and minimum elimination tree height. J. of Algorithms, 18:238–255, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bouchitté and I. Todinca. Minimal triangulations for graphs with “few” minimal separators. In Proceedings 6th Annual European Symposium on Algorithms (ESA’98), volume 1461 of Lecture Notes in Computer Science, pages 344–355. Springer-Verlag, 1998.

    Google Scholar 

  4. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in of weakly triangulated graphs. In Proceedings 16th Symposium on Theoretical Aspects of Computer Science (STACS’99), volume 1563 of Lecture Notes in Computer Science, pages 197–206. Springer-Verlag, 1999.

    Google Scholar 

  5. V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. In Proceedings 17th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2000), volume 1770 of Lecture Notes in Computer Science, pages 503–515. Springer-Verlag, 2000.

    Google Scholar 

  6. H. Broersma, T. Kloks, D. Kratsch, and H. Müller. A generalization of AT-free graphs and a generic algorithm for solving triangulation problems. In Workshop on Graphs WG’98, volume 1517 of Lecture Notes in Computer Science, pages 88–99. Springer-Verlag, 1998.

    Google Scholar 

  7. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    MATH  Google Scholar 

  8. T. Kloks, D. Kratsch, and H. Müller. Approximating the bandwidth for asteroidal triple-free graphs. Journal of Algorithms, 32:41–57, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science, 175:309–335, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math., 79(1-3):171–188, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Robertson and P. Seymour. Graphs minors. II. Algorithmic aspects of tree-width. J. of Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouchitté, V., Todinca, I. (2000). Approximating the Treewidth of AT-Free Graphs. In: Brandes, U., Wagner, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2000. Lecture Notes in Computer Science, vol 1928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40064-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-40064-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41183-3

  • Online ISBN: 978-3-540-40064-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics