Abstract
As a complement to quantitative evaluation methods for raster-to-graphics conversion, we discuss in this paper some qualitative elements which should be taken into account when choosing the different steps of one’s vectorization method. We stress the importance of having robust methods and stable implementations, and we base ourselves extensively on our own implementations and tests, concentrating on methods designed to have few, if any, parameters.
This work was partly funded by France Telecom CNET.
Now with Business Objects, Paris.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
C. Ah-Soon and K. Tombre. Network-Based Recognition of Architectural Symbols. In A. Amin, D. Dori, P. Pudil, and H. Freeman, editors, Advances in Pattern Recognition (Proceedings of Joint IAPR Workshops SSPR’98 and SPR’98, Sydney, Australia), volume 1451 of Lecture Notes in Computer Science, pages 252–261, August 1998. 13
D. Antoine, S. Collin, and K. Tombre. Analysis of Technical Documents: The REDRAW System. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 385–402. Springer-Verlag, Berlin/Heidelberg, 1992. 7
H. Asada and M. Brady. The Curvature Primal Sketch. IEEE Transactions on PAMI, 8(1):2–14, 1986. 12
G. Borgefors. Distance Transforms in Digital Images. Computer Vision, Graphics and Image Processing, 34:344–371, 1986. 6
J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on PAMI, 8(6):679–698, 1986. 9
Y. Chen, N. A. Langrana, and A. K. Das. Perfecting Vectorized Mechanical Drawings. Computer Vision and Image Understanding, 63(2):273–286, March 1996. 16
A. K. Chhabra, V. Misra, and J. Arias. Detection of Horizontal Lines in Noisy Run Length Encoded Images: The FAST Method. In Kasturi and Tombre [18], pages 35–48. 16
A. K. Chhabra and I. T. Phillips. The Second International Graphics Recognition Contest-Raster to Vector Conversion: A Report. In K. Tombre and A. K. Chhabra, editors, Graphics Recognition-Algorithms and Systems, volume 1389 of Lecture Notes in Computer Science, pages 390–410. Springer-Verlag, April 1998. 4
T. J. Davis. Fast Decomposition of Digital Curves into Polygons Using the Haar Transform. IEEE Transactions on PAMI, 21(8):786–790, August 1999. 16
G. Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-Distance Transform. Journal of Visual Communication and Image Representation, 5(1):107–115, 1994. 6, 7
D. Dori. Orthogonal Zig-Zag: an Algorithm for Vectorizing Engineering Drawings Compared with Hough Transform. Advances in Engineering Software, 28(1):11–24, 1997. 7
D. Dori and W. Liu. Sparse Pixel Vectorization: An Algorithm and Its Performance Evaluation. IEEE Transactions on PAMI, 21(3):202–215, March 1999. 7
Ph. Dosch, G. Masini, and K. Tombre. Improving Arc Detection in Graphics Recognition. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona (Spain), September 2000. To appear. 5
J. G. Dunham. Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Transactions on PAMI, 8(1):67–75, 1986. 12
L. A. Fletcher and R. Kasturi. A Robust Algorithm for Text String Separation from Mixed Text/Graphics Images. IEEE Transactions on PAMI, 10(6):910–918, 1988. 5
O. Hori and A. Okazaki. High QualityV ectorization Based on a Generic Object Model. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 325–339. Springer-Verlag, Heidelberg, 1992. 11
R. D. T. Janssen and A. M. Vossepoel. Adaptive Vectorization of Line Drawing Images. Computer Vision and Image Understanding, 65(1):38–56, January 1997. 16
R. Kasturi and K. Tombre, editors. Graphics Recognition-Methods and Applications, volume 1072 of Lecture Notes in Computer Science. Springer-Verlag, May 1996. 17, 18
L. Lam, S.-W. Lee, and C. Y. Suen. Thinning Methodologies-A Comprehensive Survey. IEEE Transactions on PAMI, 14(9):869–885, September 1992. 6
L. Lam and C. Y. Suen. An Evaluation of Parallel Thinning Algorithms for Character Recognition. IEEE Transactions on PAMI, 17(9):914–919, September 1995. 4
X. Lin, S. Shimotsuji, M. Minoh, and T. Sakai. Efficient Diagram Understanding with Characteristic Pattern Detection. Computer Vision, Graphics and Image Processing, 30:84–106, 1985. 7
C. W. Niblack, P. B. Gibbons, and D. W. Capson. Generating Skeletons and Centerlines from the Distance Transform. CVGIP: Graphical Models and Image Processing, 54(5):420–437, September 1992. 6
I. T. Phillips and A. K. Chhabra. Empirical Performance Evaluation of Graphics Recognition Systems. IEEE Transactions on PAMI, 21(9):849–870, September 1999. 4
M. Röösli and G. Monagan. Adding Geometric Constraints to the Vectorization of Line Drawings. In Kasturi and Tombre [18], pages 49–56. 16
P. L. Rosin. Techniques for Assessing Polygonal Approximation of Curves. IEEE Transactions on PAMI, 19(6):659–666, June 1997. 12, 13
P. L. Rosin and G. A. West. Segmentation of Edges into Lines and Arcs. Image and Vision Computing, 7(2):109–114, May 1989. 12, 13, 15
K. Tombre, C. Ah-Soon, Ph. Dosch, A. Habed, and G. Masini. Stable, Robust and Off-the-Shelf Methods for Graphics Recognition. In Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pages 406–408, August 1998. 3
Ø. Due Trier and A. K. Jain. Goal-Directed Evaluation of Binarization Methods. IEEE Transactions on PAMI, 17(12):1191–1201, December 1995. 4
P. Vaxivière and K. Tombre. Subsampling: A Structural Approach to Technical Document Vectorization. In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Nahariya, Israel), pages 323–332. World Scientific, 1995. 7, 10, 11, 14
K. Wall and P. Danielsson. A Fast Sequential Method for Polygonal Approximation of Digitized Curves. Computer Vision, Graphics and Image Processing, 28:220–227, 1984. 12, 13, 15
S.-C. Zhu. Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields. IEEE Transactions on PAMI, 21(11):1158–1169, November 1999. 16
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S. (2000). Stable and Robust Vectorization: How to Make the Right Choices. In: Chhabra, A.K., Dori, D. (eds) Graphics Recognition Recent Advances. GREC 1999. Lecture Notes in Computer Science, vol 1941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40953-X_1
Download citation
DOI: https://doi.org/10.1007/3-540-40953-X_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41222-9
Online ISBN: 978-3-540-40953-3
eBook Packages: Springer Book Archive