Skip to main content

Stable and Robust Vectorization: How to Make the Right Choices

  • Conference paper
  • First Online:
Graphics Recognition Recent Advances (GREC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1941))

Included in the following conference series:

Abstract

As a complement to quantitative evaluation methods for raster-to-graphics conversion, we discuss in this paper some qualitative elements which should be taken into account when choosing the different steps of one’s vectorization method. We stress the importance of having robust methods and stable implementations, and we base ourselves extensively on our own implementations and tests, concentrating on methods designed to have few, if any, parameters.

This work was partly funded by France Telecom CNET.

Now with Business Objects, Paris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ah-Soon and K. Tombre. Network-Based Recognition of Architectural Symbols. In A. Amin, D. Dori, P. Pudil, and H. Freeman, editors, Advances in Pattern Recognition (Proceedings of Joint IAPR Workshops SSPR’98 and SPR’98, Sydney, Australia), volume 1451 of Lecture Notes in Computer Science, pages 252–261, August 1998. 13

    Chapter  Google Scholar 

  2. D. Antoine, S. Collin, and K. Tombre. Analysis of Technical Documents: The REDRAW System. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 385–402. Springer-Verlag, Berlin/Heidelberg, 1992. 7

    Google Scholar 

  3. H. Asada and M. Brady. The Curvature Primal Sketch. IEEE Transactions on PAMI, 8(1):2–14, 1986. 12

    Google Scholar 

  4. G. Borgefors. Distance Transforms in Digital Images. Computer Vision, Graphics and Image Processing, 34:344–371, 1986. 6

    Article  Google Scholar 

  5. J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on PAMI, 8(6):679–698, 1986. 9

    Google Scholar 

  6. Y. Chen, N. A. Langrana, and A. K. Das. Perfecting Vectorized Mechanical Drawings. Computer Vision and Image Understanding, 63(2):273–286, March 1996. 16

    Article  Google Scholar 

  7. A. K. Chhabra, V. Misra, and J. Arias. Detection of Horizontal Lines in Noisy Run Length Encoded Images: The FAST Method. In Kasturi and Tombre [18], pages 35–48. 16

    Google Scholar 

  8. A. K. Chhabra and I. T. Phillips. The Second International Graphics Recognition Contest-Raster to Vector Conversion: A Report. In K. Tombre and A. K. Chhabra, editors, Graphics Recognition-Algorithms and Systems, volume 1389 of Lecture Notes in Computer Science, pages 390–410. Springer-Verlag, April 1998. 4

    Google Scholar 

  9. T. J. Davis. Fast Decomposition of Digital Curves into Polygons Using the Haar Transform. IEEE Transactions on PAMI, 21(8):786–790, August 1999. 16

    Google Scholar 

  10. G. Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-Distance Transform. Journal of Visual Communication and Image Representation, 5(1):107–115, 1994. 6, 7

    Article  Google Scholar 

  11. D. Dori. Orthogonal Zig-Zag: an Algorithm for Vectorizing Engineering Drawings Compared with Hough Transform. Advances in Engineering Software, 28(1):11–24, 1997. 7

    Article  Google Scholar 

  12. D. Dori and W. Liu. Sparse Pixel Vectorization: An Algorithm and Its Performance Evaluation. IEEE Transactions on PAMI, 21(3):202–215, March 1999. 7

    Google Scholar 

  13. Ph. Dosch, G. Masini, and K. Tombre. Improving Arc Detection in Graphics Recognition. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona (Spain), September 2000. To appear. 5

    Google Scholar 

  14. J. G. Dunham. Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Transactions on PAMI, 8(1):67–75, 1986. 12

    Google Scholar 

  15. L. A. Fletcher and R. Kasturi. A Robust Algorithm for Text String Separation from Mixed Text/Graphics Images. IEEE Transactions on PAMI, 10(6):910–918, 1988. 5

    Google Scholar 

  16. O. Hori and A. Okazaki. High QualityV ectorization Based on a Generic Object Model. In H. S. Baird, H. Bunke, and K. Yamamoto, editors, Structured Document Image Analysis, pages 325–339. Springer-Verlag, Heidelberg, 1992. 11

    Google Scholar 

  17. R. D. T. Janssen and A. M. Vossepoel. Adaptive Vectorization of Line Drawing Images. Computer Vision and Image Understanding, 65(1):38–56, January 1997. 16

    Article  Google Scholar 

  18. R. Kasturi and K. Tombre, editors. Graphics Recognition-Methods and Applications, volume 1072 of Lecture Notes in Computer Science. Springer-Verlag, May 1996. 17, 18

    Google Scholar 

  19. L. Lam, S.-W. Lee, and C. Y. Suen. Thinning Methodologies-A Comprehensive Survey. IEEE Transactions on PAMI, 14(9):869–885, September 1992. 6

    Google Scholar 

  20. L. Lam and C. Y. Suen. An Evaluation of Parallel Thinning Algorithms for Character Recognition. IEEE Transactions on PAMI, 17(9):914–919, September 1995. 4

    Google Scholar 

  21. X. Lin, S. Shimotsuji, M. Minoh, and T. Sakai. Efficient Diagram Understanding with Characteristic Pattern Detection. Computer Vision, Graphics and Image Processing, 30:84–106, 1985. 7

    Article  Google Scholar 

  22. C. W. Niblack, P. B. Gibbons, and D. W. Capson. Generating Skeletons and Centerlines from the Distance Transform. CVGIP: Graphical Models and Image Processing, 54(5):420–437, September 1992. 6

    Article  Google Scholar 

  23. I. T. Phillips and A. K. Chhabra. Empirical Performance Evaluation of Graphics Recognition Systems. IEEE Transactions on PAMI, 21(9):849–870, September 1999. 4

    Google Scholar 

  24. M. Röösli and G. Monagan. Adding Geometric Constraints to the Vectorization of Line Drawings. In Kasturi and Tombre [18], pages 49–56. 16

    Google Scholar 

  25. P. L. Rosin. Techniques for Assessing Polygonal Approximation of Curves. IEEE Transactions on PAMI, 19(6):659–666, June 1997. 12, 13

    Google Scholar 

  26. P. L. Rosin and G. A. West. Segmentation of Edges into Lines and Arcs. Image and Vision Computing, 7(2):109–114, May 1989. 12, 13, 15

    Article  Google Scholar 

  27. K. Tombre, C. Ah-Soon, Ph. Dosch, A. Habed, and G. Masini. Stable, Robust and Off-the-Shelf Methods for Graphics Recognition. In Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pages 406–408, August 1998. 3

    Google Scholar 

  28. Ø. Due Trier and A. K. Jain. Goal-Directed Evaluation of Binarization Methods. IEEE Transactions on PAMI, 17(12):1191–1201, December 1995. 4

    Google Scholar 

  29. P. Vaxivière and K. Tombre. Subsampling: A Structural Approach to Technical Document Vectorization. In D. Dori and A. Bruckstein, editors, Shape, Structure and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and Structural Pattern Recognition, Nahariya, Israel), pages 323–332. World Scientific, 1995. 7, 10, 11, 14

    Google Scholar 

  30. K. Wall and P. Danielsson. A Fast Sequential Method for Polygonal Approximation of Digitized Curves. Computer Vision, Graphics and Image Processing, 28:220–227, 1984. 12, 13, 15

    Article  Google Scholar 

  31. S.-C. Zhu. Stochastic Jump-Diffusion Process for Computing Medial Axes in Markov Random Fields. IEEE Transactions on PAMI, 21(11):1158–1169, November 1999. 16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S. (2000). Stable and Robust Vectorization: How to Make the Right Choices. In: Chhabra, A.K., Dori, D. (eds) Graphics Recognition Recent Advances. GREC 1999. Lecture Notes in Computer Science, vol 1941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40953-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-40953-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41222-9

  • Online ISBN: 978-3-540-40953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics