Efficient Secure Multi-party Computation*
(Extended Abstract)

Martin Hirt!, Ueli Maurer!, and Bartosz Przydatek?**

L' ETH Zurich, Switzerland,
{hirt,maurer}@inf.ethz.ch
2 Carnegie Mellon University, USA,
bartosz@cs.cmu.edu

Abstract. Since the introduction of secure multi-party computation, all
proposed protocols that provide security against cheating players suffer
from very high communication complexities. The most efficient uncondi-
tionally secure protocols among n players, tolerating cheating by up to
t < n/3 of them, require communicating O(n®) field elements for each
multiplication of two elements, even if only one player cheats.

In this paper, we propose a perfectly secure multi-party protocol which
requires communicating (’)(n3) field elements per multiplication. In this
protocol, the number of invocations of the broadcast primitive is inde-
pendent of the size of the circuit to be computed. The proposed tech-
niques are generic and apply to other protocols for robust distributed
computations.

Furthermore, we show that a sub-protocol proposed in [GRRI§] for im-
proving the efficiency of unconditionally secure multi-party computation
is insecure.

1 Introduction

1.1 Secure Multi-party Computation

The goal of secure multi-party computation, as introduced by Yao [Yao82), is
to enable a set of n players to compute an arbitrary agreed function of their
private inputs. The computation must guarantee the correctness of the outputs
while preserving the secrecy of the players’ inputs, even if some of the players
are corrupted by an active adversary and misbehave maliciously.

As the first general solution to this problem, Goldreich, Micali, and Wigder-
son [GMWST7| presented a protocol, based on cryptographic intractability as-
sumptions, which allows n players to securely compute an arbitrary function even
if an adversary corrupts any t < n/2 of the players. In the secure-channels model,
where bilateral secure channels between every pair of players are assumed, Ben-
Or, Goldwasser, and Wigderson [BGWS8] and independently Chaum, Crépeau,

* Research supported by the Swiss National Science Foundation (SNF), SPP project
no. 5003-045293. Full version at http://www.inf.ethz.ch/department/TI/um/ .
** Research done at ETH Zurich, Switzerland.

T. Okamoto (Ed.): ASTACRYPT 2000, LNCS 1976, pp. 143-[IG1], 2000.
(© Springer-Verlag Berlin Heidelberg 2000

144 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

and Damgard [CCDS8S] proved that unconditional security is possible if at most
t < n/3 of the players are corrupted. In a model where additionally physical
broadcast channels are available, unconditional security is achievable if at most
t < n/2 players are corrupted [RB89, Bead1bl [CDDT99].

1.2 Efficiency Considerations

All proposed multi-party protocols that provide security against misbehaving
players suffer from high communication complexities. This is in sharp contrast
to their private (but non-resilient) counterparts, for which reasonably efficient
solutions are known [BGWS8§|. The communication overhead of resilient multi-
party protocols over private protocols is due mainly to the sophisticated tech-
niques for achieving resilience against faults. Specifically, these techniques make
extensive use of a broadcast primitive, which must be realized with a protocol for
Byzantine agreement (e.g., [PSL80, [DFEF™ 82 [FMS88| [BGP89| [CW8&9]). Such pro-
tocols are very communication-intensive. The necessity of the broadcast channel
is independent of whether or not actual faults occur: often broadcast is used
to complain about an inconsistency, but when no inconsistency is detected, the
players must nevertheless broadcast a confirmation message (the inherent infor-
mation of the message is one bit). Many researchers take a broadcast channel for
granted, neglecting the fact that this primitive does not exist in most realistic sce-
narios for distributed computing, and hence must be simulated. Broadcast is an
efficiency bottleneck, in both information-theoretic and cryptographic settings;
reducing the number of broadcast invocations is therefore crucial for reducing
the overall communication complexity of distributed protocols.

There is a line of research that focused on reducing the communication com-
plexity of multi-party protocols. First, several works [BB89, BMR9I0, BFKRI0]
concentrated on reducing the round complexity of such protocols. However, the
price for the low round complexity is a substantially increased message complex-
ity. With the current results, namely O(n) field elements per multiplication, the
main efficiency bottleneck seems to be the message complexity rather than the
round complexity. First steps towards lower message complexities were taken in
[BEKRA(]. The proposed protocol is very efficient, but it only tolerates adver-
saries corrupting up to t = O(logn) players. Protocols with optimal resilience
(i.e., t < n/3) were proposed in [FY92] and in [GRRIK]. Their approach is to
first perform a private protocol with fault-detection (for the whole protocol in
[FY92], and for a part of the protocol in [GRRI8|), and only in case of faults
to repeat the computation with a slow but resilient protocol. Although this ap-
proach can improve the best-case complexity of the protocol (when no adversary
is present), it cannot speed up the protocol in the presence of a malicious ad-
versary: a single corrupted player can persistently enforce the robust but slow
execution, annihilating (and even inverting) any efficiency gain.

Efficient Secure Multi-party Computation 145

1.3 Contributions

This paper significantly improves the message complexity of unconditionally
secure multi-party computations, without increasing the round complexity in a
relevant manner. We consider a set of n players, where up to ¢t < n/3 of them can
be corrupted by a computationally unbounded, adaptive, active adversary. We
present a protocol that allows the players to securely compute an agreed function
specified as an arithmetic circuit over a finite field FF, requiring communication
of O(mn?) field elements, where m denotes the number of multiplication gates
in the circuit. The total number of invocations of the broadcast primitive in the
whole protocol is only O(n?), independent of the circuit size.

This is to be compared with the most efficient unconditionally secure protocol
known so far, namely the protocol of Beaver [Bea91a], which requires O(mn®)
field elements. Other protocols whose goal is to improve the message complex-
ity of unconditionally secure multi-party protocols [FY92, [GRRIS] fail to do so
in the presence of faults. The new protocol improves even on the cryptographi-
cally secure protocol [GRR98], which communicates O(mn?) field elements] (but
tolerates up to ¢ < n/2 corruptions). Recently, a protocol with cryptographic
security for evaluating Boolean circuits was proposed in which O(mn3k) bits
are communicated, where k is a security parameter [CDNO0]. The round com-
plexities of all considered protocols are essentially equal. All stated complexities
include the costs of simulating the broadcast channels by a protocol for Byzan-
tine agreement.

The techniques that allow this speed-up are generic and apply to many proto-
cols for general multi-party computation as well as to special-purpose protocols,
in both the cryptographic model and the information-theoretic model. One key
technique is player elimination. In contrast to previous protocols where only
evident misbehavior leads to elimination and where slowing down the protocol
is still possible without being detected, we proceed more rigorously: Whenever
a fault occurs (and slows down the protocol execution), a set of players which
contains at least a certain number of corrupted players (but possibly also some
honest ones) is identified and eliminated from the further protocol execution.
This ensures that faults occur only rarely, namely at most ¢ times during the
entire computation, which in turn allows to reduce the number of consistency
checks performed in the protocol: Rather than after each gate, the consistency
checks are performed only after a sequence of gates, a so-called segment. During
the entire computation, up to ¢ segments can fail and require re-computation,
but with an appropriate size of the segments, the total cost of re-computation
will be much smaller than the savings due to the reduced number of the checks.

Furthermore, we show that the very efficient protocol of [GRRI§| for the
verification of equality of shared values is insecure (cf. App. [A]), thus invalidating
previously stated efficiency improvements.

! In this protocol, the field must be large for security reasons.

146 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

1.4 Outline

In Sect. 2 we introduce the general framework for efficient resilient protocols.
This framework is not specific for multi-party computation. The new multi-
party computation protocol is described in Sect. Bl and its efficiency is analyzed
and compared with known protocols in Sect. @l Finally, some conclusions and
open problems are mentioned in Sect.

2 Framework for Efficient Resilient Protocols

2.1 Introduction

Distributed protocols resilient against misbehavior of some of the players re-
quire in general much more communication than their private (but non-resilient)
counterparts, even when no cheating occurs. The reasons for this contrast are
two-fold: First, in a model where players might deviate from the protocol, expen-
sive consistency checks must be performed frequently, and agreement must be
reached on whether or not faults occurred. Second, if indeed at least one player
misbehaves, then inconsistencies will occur, and costly fault-recovery procedures
must be applied. Note that the consistency checks are necessary even when no
cheating occurs, whereas fault recovery is necessary only when at least one player
misbehaves.

In this section, we describe a framework for efficient resilient protocols that
overcomes these disadvantages. The key idea is to eliminate at least one malicious
player (and potentially some honest players) each time a fault is detected. Hence
the number of fault-recovery invocations is bounded by the maximal number of
corrupted players and is independent of the length of the protocol. Furthermore,
the resulting seldom occurrence of faults allows to reduce the frequency of con-
sistency checks and thereby to significantly reduce the communication-overhead
caused by them.

The techniques presented in this section apply to many applications in several
models, including those relying on intractability assumptions. The adversary can
be static or adaptive, but not mobile: A mobile adversary [OY91], [CH94] may
release some of the corrupted players during the protocol execution and thereby
regain the capability of corrupting new players, which contradicts the idea of
elimination of corrupted players.

2.2 Incorporating Resilience into a Private Protocol

We consider a private protocol that proceeds in rounds (e.g., in each round one
gate is evaluated) and wish to execute this protocol in a resilient manner. In
contrast to the classical approach to resilient protocols, where after each round
some consistency checks are performed and agreement on whether or not a fault
occurred is reached, we divide the protocol into segments, each consisting of a
sequence of rounds, and only at the end of each segment the consistency of the
data held by the players is checked and the players agree on whether or not a

Efficient Secure Multi-party Computation 147

fault occurred (fault detection). If a fault is detected, then a set of players is
identified which contains at least a certain number of cheaters (fault localiza-
tion), the players in the set are eliminated from the further protocol execution
(player elimination), and the failed segment is repeated (fault correction). If pri-
vacy is an issue, then after each round some checks must be performed, but no
agreement must be reached on the fact whether or not a fault occurred (weak
fault detection).

During a protocol consisting of m rounds, the classical approach invokes m
times fault detection and, if at least one player misbehaves permanently, m times
fault-recovery. In our approach, where the protocol is divided into segments of
ms rounds, only the weak fault detection is invoked m times. Fault detection is
performed m/mg times, and fault localization, player elimination, and fault cor-
rection are invoked at most ¢ times. By selecting m appropriately, the overhead
for the (in total up to t) repetitions of a segment will not dominate the total
complexity of the protocol, and the costs of fault detection and fault localization
are independent of m (and polynomial in n). In many applications, this will
significantly reduce the overall complexity of the protocol.

We now describe the steps in more detail:

1. Private computation with weak fault detection. All rounds of the seg-
ment are computed according to the private computation. The computation
of this step must be verifiable, i.e. it must be possible to check later (see be-
low) whether or not any faults occurred. However, robustness is not required,
i.e. if faults occur, then the computation may fail (in such a case it must be
possible to perform an appropriate fault localization, see below). In order
to preserve privacy even in case of faults, consistency checks are performed
after each round, and every player sends to every other player one bit indi-
cating whether or not he observed an inconsistency. A player who observed
or was informed about an inconsistency will use default (random) dummy
values unrelated to the actual values in all further rounds of the segment.

2. Fault detection. The goal of fault detection is to reach agreement on
whether or not a fault occurred during the current segment. Typically, fault
detection is achieved by having every player broadcast (with a protocol for
Byzantine agreement) a binary message according to whether or not he ob-
served or was informed about an inconsistency in any round of the current
segment, and a fault is detected if at least one player complains. The follow-
ing steps 3. to 5. are performed if and only if a fault is detected.

3. Fault localization. The purpose of fault localization is to find out which
players are corrupted or, because agreement about this can usually not be
reached, at least to narrow down the set of players containing the cheaters.
The output of fault localization is a set D with |D| = p players, guaranteed
to contain at least r cheaters, denoted as (r, p)-localization.

4. Player elimination. The set D agreed upon during fault localization is
eliminated from the further computation. In general, after eliminating the
players in D, the protocol cannot be continued immediately, but it must be

148 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

transformed to capture the new setting with n — p players and at most t — r
cheaters.

5. Fault correction. Since some players are eliminated whenever a fault is
detected, faults can be corrected simply by repeating the current segment of
the protocol.

3 Constructing Efficient Multi-party Computation
Protocols

In this section we present a construction of efficient multi-party computation
protocols in the secure-channels model, based on the framework with player-
elimination from the previous section. We first formally define the considered
model, then we describe the main (top-level) protocol and finally all required
sub-protocols.

3.1 Model

We consider the well-known secure-channels model as used in [BGWSR| [CCDSKS]:
The set P = {P,..., P,} of n players is connected by bilateral synchronous re-
liable secure channels. Broadcast channels are not assumed to be available. The
goal of the protocol is to compute an agreed function, specified as an arithmetic
circuit over a finite field F with |F| > n. The number of inputs to the circuit
is denoted by n;, the total number of outputs by nOE the number of multipli-
cation gates in the circuit by m, and the multiplicative depth by d (i.e., the
maximal number of multiplication gates in any path of the circuit). To each
player P, a unique public value «; € F\ {0} is assigned. There are no further
assumptions about the field¥ The computation of the function must be secure
with respect to a computationally unbounded adaptive active adversary who
can corrupt up to ¢ of the players, where ¢ is a given threshold with ¢ < n/3.
Once a player is corrupted, the adversary can read all his information and can
make the player misbehave arbitrarily. The security of our protocol is perfect,
i.e. unconditional with zero failure probability. Formal definitions of security can
be found in [Can00] and in [MR9S§|, and our protocol is secure for any of these
definitions.

To simplify the presentation, we adopt the following convention throughout
the description of the protocols: Unless otherwise stated, whenever a player does
not receive an expected message, or receives a malformed message, then a default
value for this message is taken.

2 no specifies the total number of outputs — if the same value is given as output to
several players, then this value is counted several times.

3 This is in contrast to the protocol in [BGWSS], where the existence of an n-th root
of unity in F is assumed.

Efficient Secure Multi-party Computation 149

3.2 Main Protocol

The protocol follows the classical approach for secure multi-party computation:
First, each player secret-shares his input(s) among the players. Second, the cir-
cuit is evaluated with the shared values. Third, the output value(s) are recon-
structed towards the authorized players.

According to the framework from Sect.[2 the circuit will be divided into seg-
ments. If the evaluation of a segment fails, then some players are eliminated and
the segment is repeated. Clearly, all players must be able to provide input and
receive output, including players that are eliminated in the protocol evaluation
(also honest players can be eliminated). This is achieved by using a resilient pro-
tocol (which does not make use of the player-elimination technique) for sharing
input values. No special measures are necessary for receiving output, because
the secret-reconstruction protocol can also be performed towards an eliminated
player (this player only receives values and cannot cause inconsistencies).

Sharing. The sharing is based on Shamir’s secret-sharing scheme [Sha79], ex-
tended to a two-dimensional sharing [GHY&7,[BGWS8S, [CCD&Y| [RB]9, [FHMIS].
Each value is shared among the players with a polynomial of degree ¢, and each
share is again shared among the players with a polynomial of degree ¢. Formally,
a value s is t-shared among the players if there exist degree-t polynomials f and
fis-ooy fn with s = £(0) and f;(0) = f(«;). The information held by player P; is
the share s; = f(«;), the polynomial f;, and the share-shares s;; = f;(«a;) (for
j =1,...,n). The polynomials in the sharing must be randomly chosen such
that any set of ¢ players does not obtain any information about the secret.

Segmentation. Due to the linearity of the secret-sharing scheme, linear func-
tions of shared values can be computed non-interactively, and hence only mul-
tiplication gates are relevant for the communication complexity. In order to
partition the circuit with m multiplication gates and multiplicative depth d into
segments, we select an ordering of the gates which satisfies the partial order
defined by the circuit (i.e., the inputs of the i-th gate must be provided by gates
with index smaller than). Every segment consists of a number of consecutive
gates, subject to the following bounds:
e the number m, of multiplication gates in each segment is at most [m/n],
o the multiplicative depth ds of each segment is at most [d/n].
Furthermore, in every segment (except the last) at least one of the above bounds
is satisfied with equality, hence the total number of segments is smaller than 2n.
At the end of every segment, fault detection is performed and agreement is
reached on whether or not a fault occurred within the segment. If no fault oc-
curred, then the computation of this segment is completed, and the next segment
is started. If a fault is detected, then a (1,2)-localization D C P will be found
and eliminated (we will not consider other types of localizations), and the eval-
uation of the segment is repeated. During the whole circuit evaluation, at most
t segments fail. The described segmentation guarantees that the repeated com-
putation will not dominate the overall protocol complexity, neither in terms of

150 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

the number of communicated bits nor in terms of the number of communication
rounds.

Protocol Overview. Let P denote the set of players, where n = |P|, and
t < n/3 the upper bound on the number of cheaters. During the computation,
players can be eliminated, and then P’ will denote the set of remaining players,
n' = |P’|, and ¢’ the upper bound on the number of cheaters in this set.
0. Set P :=P,n' :=n,t =t
1. Input stage: Every player P providing input secret-shares his input value
(Sect. B3).
2. Computation stage (Sect.34): For each segment of the circuit:
2.1 For each gate in the segment (all gates at the same level can be evaluated
in parallel):
e If the gate is linear: Call the sub-protocol for the evaluation of linear
functions.

o If the gate is a multiplication gate: Call the multiplication sub-
protocol. Players that have detected (or were notified about) a fault
earlier in this segment use default shares.

2.2 For each P; € P/, broadcast one bit according to whether or not a fault
was observed (or notified) in the segment. If at least one player reports
a fault, then the segment fault-localization procedure is invoked to find
a (1,2)-localization D, and P’ is set to P’ \ D, t’ is set to t' — 1, and
step 2. is restarted (for the same segment).
3. Output stage: For every player P that is to receive output: Call the sub-
protocol for receiving output (Sect. BH).

3.3 Input Stage

In the input stage, every player secret-shares his input(s). Let P be the set
of players, at most t of which are corrupted, and let P be a designated dealer
holding a secret input s. The protocol for providing s as input is a variation of the
verifiable secret-sharing (VSS) protocol of Ben-Or, Goldwasser and Wigderson

[BGWSS|:

1. DISTRIBUTION. The dealer P selects at random a polynomial p(z,y) =
ZE,j:O rijz'y? of degree t in both variables, where p(0,0) = s, and sends
the polynomials f;(z) = p(x,«;) and ﬁ(y) = p(ay,y) to player P; (for
1=1,... ,n)@ This implicitly defines the polynomial f(z) = p(0,).

2. CONSISTENCY CHECKS. Each pair of players P;, P; (for 1 <14,j <n) checks
whether f;(a;) Z fi(ai). For this, P, sends fi(c;) to P;, and P; checks
whether the received value is equal to f;(c).

* An efficiency gain of a factor 2 can be achieved by setting 7;; = r;;, and hence

fi(z) = fi(z). One can prove that privacy is not violated by this technique. See
[CDMO00Q] for more details.

Efficient Secure Multi-party Computation 151

3. COMPLAINT STAGE. Every player broadcasts a message (containing one bit)
indicating whether all consistency checks were successful or at least one test
failed. In case of a complaint, the player afterwards broadcasts a bit-vector,
where the j-th bit indicates whether or not the player has observed an incon-
sistency with player P;. The dealer answers the complaints by broadcasting
the corresponding correct values.

4. ACCUSATION STAGE. If a player P; observes more than ¢ inconsistencies or
discovers that the dealer’s answers contradict his own values, he broadcasts
an accusation. In such a case the dealer broadcasts both polynomials f;(x)
and fj(y) The published polynomials can cause some new inconsistencies
with the values held by some other players, who react again with accusa-
tions, and so on[d If more than ¢ players have accused, or if the dealer did
not answer all the complaints and accusations, a default sharing (e.g., the
constant sharing of 0) is taken.

In the protocol of [BGWSS], the share of player P; is s; = f(a;) = f:(0),
and the second dimension of the sharing is not used. In our scheme, the share
of player P; is the polynomial f; (and in particular s; = f;(0)), as well as the
share-shares s;; = ﬁ-(aj) =p(a;,a;) (for j=1,...,n).

In order to analyze the security of this secret-sharing protocol we distinguish
two cases: (a) If the dealer is honest, all shares and share-shares of honest players
will be consistent, and only values held by corrupted players can be published. No
honest player will accuse the dealer, hence there will be at most ¢ accusations.
Clearly, in this case the outcome will be a proper t-sharing. (b) If the dealer
is corrupted, then at the end of the protocol (if there were not more than ¢
accusations) the cross-over points of all honest players are consistent, and their
share-shares uniquely define a two-dimensional polynomial p'(x,y), satisfying
the conditions for a proper t-sharing. If there were more than ¢ accusations,
then at least one of the accusations origins from an honest player, and indeed
the dealer is cheating. In this case it is legitimate to take some default value as
the dealer’s secret.

3.4 Computation Stage

The computation of the circuit proceeds segment by segment. We denote the
current set of players with P’, where n’ = |P’|, and the current upper bound
on the number of cheaters in P’ with ¢'. Without loss of generality, we assume
that P’ = {P1,...,Py}. A segment is computed as follows: First, the gates
of the segment are computed. Linear functions can be computed robustly (as
no communication is needed). In contrast, the computation of multiplication
gates is private and verifiable, but not robust. At the end of each multiplication
sub-protocol, the (honest) players inform each other in a weak fault detection

5 One can show that two rounds of accusations are sufficient to reach agreement. After
two rounds of accusations, either the total number of accusations exceeds t, or all
accusations in the second round originate from corrupted players.

152 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

procedure whether or not they observed an inconsistency. If a player observed
such an inconsistency, or was informed about one in weak fault detection, then
he continues the computation of the segment with default values independent of
the actual shares. At the end of each segment, fault detection is performed and,
if necessary, fault localization, player elimination and fault correction.

Linear Functions. Let £ be a linear function, and assume that the values
a,b, ... are t-shared with polynomials f, f1,..., fn, 9,91,---,9n/, ..., r€Spec-
tively. Due to the linearity of £, the polynomials h = L(f,g,...) and h; =
L(fi,9i,...) define a t-sharing of ¢ = L(a,b,...). Hence, player P; can compute
his share of ¢ as h; = L(fi, gi,...) and ¢j; = L(aj;,bji,...) (for 5 =1,...,n/).
The privacy of this protocol is trivial (there is no communication), and the cor-
rectness is due to the linearity of the sharing.

Multiplication. The crucial sub-protocol for multiplication is a re-sharing pro-
tocol. A re-sharing protocol is a protocol that takes a degree-y sharing of a value
s and generates an independent degree-§ sharing of s. This re-sharing is possible
in a verifiable (but non-robust) manner if ¢’ < n’ —~. Privacy can be guaranteed
ift! <~andt <.

The protocol for computing the t-shared product ¢ of two t-shared values
a and b proceeds in three steps: First, both inputs a and b are re-shared with
degree t’. Second, every player locally multiplies his respective shares and share-
shares of a and b, resulting in a degree-2¢’ sharing of ¢. And third, this degree-2t’
sharing of c¢ is re-shared to a degree-t sharing.

We have to show that the necessary (and sufficient) conditions for all re-
sharings are satisfied: After a sequence of k (1, 2)-localizations and eliminations,
we have n’ = n — 2k and t' = t — k. The requirements for the re-sharing are
t' <n' —tand t' <n' —2t', and both are satisfied for 3t < n.

Re-sharing protocol. The goal of re-sharing is to transform a ~y-sharing of a value
s into a proper and independent d-sharing of s, where t' < n’ — v, t < v and
t’ < §. The re-sharing sub-protocol can fail in the presence of malicious players.
However, if it fails, all (honest) players will learn so, and at the end of the
segment, agreement on whether or not such a fault occurred will be reached and
the segment will be repeated if necessary.

Roughly speaking, our re-sharing protocol works along the lines of degree re-
duction of [BGWSS,[GRRI8], but it is significantly more efficient, due to various
techniques in the spirit of the player-elimination framework (cf. Sect. B).

Assume that s is -shared with the polynomials f and fi,..., fu/, and player
P; holds the polynomial f;(z) (hence his share s; = f;(0)), and his share-shares
sji = fj(a;) (for j = 1,...,n'). The value s can be expressed as a linear com-
bination (Lagrange interpolation) of the values si,...,s, [BGWS8| (GRRIS].
Therefore, once the values s, ..., s, are d-shared, the required d-sharing of s
can be computed by a distributed evaluation of the appropriate linear function
(as described in Sect. B). Thus, the re-sharing can be performed as follows:

Efficient Secure Multi-party Computation 153

Every player §-shares his share s;, proves that the shared value is indeed s;, and
computes his degree- share of s as a linear combination of the received shares
of s1,...,8n.

We describe the steps in more detail:

1. NON-ROBUST VSS. Every player P; shares his share s; with the degree-
8 polynomials h(?, hgi), ey hg/) in a non-robust but verifiable manner. The
protocol works like the first two steps of the VSS in the input stage (Sect. B3):
a) P; selects at random a polynomial p® (x,y) of degree ¢ in both variables,
where p(”(0,0) = s;, and sends the polynomials h§-i) (z) = p¥(z,q;)
and Ey) (y) = p9 (e, y) to player P; (for j =1,...,n’). This implicitly
defines the polynomial A9 (z) = p{(0, z).

b) Each pair of players P;, P, (for 1 < j,k < n') verifies the equality of
their common shares. For this, P; sends h;i) (ag) to Py, who then checks

whether the received value is equal to iNLEJ)(aj).

2. PROVING CORRECTNESS. Every player P; proves that h()(0) = f;(0) by
showing that the free coefficient of the polynomial h() (z) — fi(x) is equal to
zero. This is done in two steps:

a) Let p = max(y,0). P; computes the polynomial ¢ (z) := (h()(z) —
fi(z))/z (whose degree is at most ;1—1), and distributes the shares on g(*)
among the players. For this purpose the non-robust VSS protocol from
Step [Mis used, where the corresponding two-dimensional polynomial, say
¢ (x,y), is chosen randomly, but such that ¢¥(0,2) = ¢ (x).

b) Every player Py checks whether azg® (ax) = b (o) — fi(ar).

3. WEAK FAULT DETECTION. Every player sends to every other player one bit
indicating whether or not any of his consistency checks in Steps [, Bh and
Bb, have failed.

4. LAGRANGE INTERPOLATION. Every player P; who has neither detected nor
was informed about any inconsistencies computes his degree-é share of s as
a linear combination of his shares of s1, ..., sy.

It is easy to see (using basic algebra), that if no player has reported inconsis-
tencies during the weak fault detection, then the result of re-sharing is a proper
d-sharing of s. Otherwise, if at least one (honest) player has sent or received a
bit indicating inconsistencies, it will be possible to identify a (1, 2)-localization.

Fault Detection. At the end of the segment, every player P; broadcasts one
bit indicating whether or not an inconsistency was observed by or reported to
P; in one of the re-sharing protocols in the segment. If all players broadcast a
confirmation (i.e., no inconsistency was observed), then the computation of the
segment is completed and the next segment can be started. If at least one player
broadcasts a complaint, then fault localization is invoked.

Fault Localization. The goal of fault-localization is to identify a (1, 2)-locali-
zation D, i.e. a set D C P containing two players, at least one of them being

154 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

corrupted. These players will then be eliminated from the protocol, and hence
fault localization is invoked at most ¢ times.

The two players to be eliminated are selected from the players involved in
the first fault that occurred in the current segment. In order to determine the
first fault, every player who complained during fault detection broadcasts the
index (relative to the segment) of the re-sharing protocol, in which for the first
time an inconsistency occurred, together with a number denoting the step of
the re-sharing protocol in which the fault was detected (Step [l Ba or Bb), or
reported (Step B). Among all the broadcast indices the smallest one is selected.
Let Py, denote the player who complained about the selected re-sharing protocol
The method of determining the (1,2)-localization D depends on the step of
the re-sharing protocol in which the first fault appeared. Four cases must be
distinguished:

(i) The first fault is in Step [i.e. for some ¢ and j, the value hgz) () sent by
P; differs from 7L,(;) (aj):
P, broadcasts i, j, and 7L,(;) (a;). On this request, P; broadcasts Egz) (), and
P; broadcasts p(® (ay, ;). Given these three values, the set D is determined
as follows: .
— I b\ (a;) = 1Y (), then D == {P}, By}, else
— if p@ (ag,) # Y (a;), then D := {P;, P}, else
— 9 (ay, aj) # h;z) (o), and D := {F;, P;}.
(ii) The first fault is in Step Zh: analogously to the case (i).
(iii) The first fault is in Step2b, i.e., for some i the check axg™ (o) L po (o) —
fi(ay) failed:
According to Py, player P; is cheating, so Py broadcasts the index i, and D
is set to {P;, P }.
(iv) The first fault is in Step B, i.e., Py claims that in Step Blsome player reported
a fault to him:
Since no player admits the discovery of an inconsistency (as follows from
the rule for choosing Py), obviously either Py is lying or the player who
reported the fault to him was malicious. P broadcasts the index ¢ of the
player P; who in Step Blreported the fault to him, and D is set to {F;, Py }.

It is obvious that all players find the same set D, and that in each case at
least one player in D is corrupted, hence D is a (1, 2)-localization.

Player Elimination. All players set P’ to P’ \ D, and reduce t' to ¢’ — 1.

Fault Correction. Fault correction is achieved by repeating the failed segment.
Since after each failure at least one malicious player is eliminated, at most ¢
segments will be repeated in a complete protocol run.

6 If there are several such players, we consider those who have broadcast the smallest
step-number, and from that group the player with the smallest index k is chosen.

Efficient Secure Multi-party Computation 155

3.5 Output Stage

Let P be the designated player supposed to receive a value s that is ¢-shared
among the players in P’ with the polynomials f and fi,..., fu/. First, every
player P; € P’ sends the polynomial f;(z) and the share-shares sy;, ... sp/; to P.
Then, P interpolates the secret s from the shares s; = f;(0) for all ¢ where f;(x)
is consistent with all but (at most) ¢’ share-shares s;;. Note that this protocol
needs neither error correction nor broadcast.

The privacy of this protocol is obvious. The correctness can be proven as
follows: At most t' players send a bad polynomial f] # f;, and they will be
inconsistent with at least n’ — ¢ — t’ > ¢’ share-shares. Hence, P will ignore bad
polynomials and interpolate the correct secret s.

4 Complexity Analysis

In this section we analyze the communication complexity of the proposed multi-
party computation protocol and compare it with the most efficient protocols
known before. We focus on the case when an adversary is present and neglect
the efficiency gain that some protocols (e.g., [FY92]) achieve when no fault at
all occurs.

The communication complexity of a protocol is characterized by two quan-
tities: the message complexity (MC, the total number of bits transmitted by
all players during the protocol), and the round complezity (RC, the number of
communication rounds of the protocol).

When analyzing the communication complexity of a multi-party protocol,
one must also include the communication costs for simulating the broadcast
channels. For most protocols in the literature (but not for ours), these costs are
dominating the overall complexity of the protocol. We consider two different
types of broadcast sub-protocols: Protocols with optimal message complexity
(O(n?), but O(n) rounds), e.g., [BGP8Y, [CW89| DRSS, [HHI1], and protocols
with optimal round complexity (O(1), but O(n*) messages), e.g., [FM&8]. So
far, no broadcast protocol with O(1) rounds and O(n?) messages is known. In
the cryptographic setting, such a protocol is known for a model where a trusted
dealer is available in the set-up phase [CKSO0], but this requirement contradicts
the main purpose of of secure multi-party computation, namely getting rid of
the need for a trusted party. There exist also various techniques which improve
the efficiency of (stand-alone) protocols for Byzantine agreement, e.g. “early
stopping” [DRS82]. However, they lead to “staggered termination”, and it is
unclear how and whether at all they are applicable for multi-party computation
protocols.

4.1 Complexity of the New Protocol

The communication complexity of the proposed MPC protocol (cf. Sect. B]) is
stated in the following theorem. This result is achieved by employing a Byzantine
agreement protocol with optimal message complexity [BGP89, [CW89].

156 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

Theorem 1. The protocol of Sect.[3 allows a set of n players, with at most ¢t <
n/3 of them being corrupted, to securely compute a function over a finite field TF,
using O(d+n?) communication rounds and with total communication complexity
O(n;n* + mn® + non?) field elements, where n; and n, denote the number of
inputs and outputs, respectively, m denotes the number of multiplications and
d the multiplicative depth of the circuit computing the function.

The detailed analysis of this protocol is omitted from this extended abstract.
We give only a very brief overview. The VSS protocol for providing one input
requires in the worst case O(n?) field elements to be broadcast, which results
in O(n?) field elements per input when using the most efficient broadcast pro-
tocols [BGP89| ICWR89]. Each multiplication requires each player to secret-share
(with the non-robust VSS protocol) one element, which adds up to O(n?) field
elements per multiplication, and hence O(msn?) elements per segment with m
multiplication gates. Fault-detection requires O(n) bits to be broadcast per seg-
ment, and fault-localization requires O(nlog mg+log |F|) bits to be broadcast at
the end of up to t segments. For the proposed segmentation with m, = [m/n]
and ds = [d/n], at most 2n segments are computed, which results in a total mes-
sage complexity of O(mn?) field elements. Only O(n?) field elements must be
broadcast in total (independently of the circuit size!), which does not dominate
the overall costs when m > n. The message complexity of secret reconstruction
is O(n?) elements per output (broadcast is not needed).

4.2 Comparison with Other Protocols

The complexity of the new protocol is compared with the most efficient multi-
party computation protocols for the unconditional model known before. In the
sequel, we summarize the most important results. A more detailed complexity
analysis can be found in [Prz99]. For simplicity we focus on the complexity
of the evaluation of the circuit, and ignore the complexities of providing inputs
and receiving inputs. The following table lists the message complexity (MC) and
the round complexity (RC) of the most efficient protocols for the unconditional
model, once when a broadcast protocol with optimal bit complexity is applied,
and once when a broadcast protocol with optimal round complexity is applied.
The second last row in the table refers to the protocol of [BGWS8S], where the
“Rabin’s trick” [GRR98] for simpler multiplication is used. Note that the other
technique for increasing the efficiency of [BGWRSS] suggested in the same paper,
namely the efficient proof that a shared secret is indeed the product of two
shared factors, is shown to be insecure (see App. [A]), and hence its impact on
the complexity is not analyzed.

For completeness, in Table[2 we also state the complexities of the best proto-
col for the cryptographic model [GRRIS|, in which up to t < n/2 of the players
can be corrupted, but the security of the protocol relies on unproven assump-
tions. Subsequently to our work, a new protocol with cryptographic security was
proposed in [CDNO0Q], and its complexity is also listed in the table (where k de-
notes the security parameter). In contrast to other protocols, here the function
must be specified as a Boolean circuit, and the complexity is indicated in bits.

Efficient Secure Multi-party Computation 157

MPC protocol [Broadcast protocol | MC | RC
[BGWSS] FBl&iz]g CWe9) 822223 (59((51(2)
[CCDsg] mﬁq W89 8%2 g(%g))
[Beadlal Egggsjg CW89] gmzi O((?i(i)n)
laer) ih(/,[izjg CWEY] gmzi g((d(il))
[BGWSS, GRRIS] gg}izjo CWs9) 822223 (59((51(2)
this paper [BGP8Y| [CWg9] O(mn®) | O(d+n?)

Table 1. Worst-case communication complexities of unconditional MPC proto-
cols.

MPC protocol |Broadcast protocol | MC | RC
. [BGPRIl [CWRI] O(mn*) O(dn)
[GLE08] [FMRS] o(mn®) | 0@
BGP8Y| [CWS9) O(mn®k) | O(dn)
CDNOD |
| } [FMSS] O(mn*k) | O(d)

Table 2. Worst-case communication complexities of cryptographic MPC proto-
cols.

5 Conclusions and Open Problems

General secure multi-party computation protocols for evaluating an algebraic
circuit will have important applications in distributed information systems. One
major reason why such protocols are not yet widely used in practical applications
is their hopeless inefficiency. In particular, they all make extensive use of a
reliable broadcast channel, which in any reasonable application scenario is not
available, and hence must be simulated by an expensive protocol among the
players.

In this paper we proposed a new framework for communication-efficient dis-
tributed protocols, applied it to secure multi-party computations, resulting in a
very efficient protocol. We stress that the message complexity (and possibly the
round complexity), but not the computation complexity, are the bottlenecks in
most distributed applications.

There are several open problems to be solved to make general multi-party pro-
tocols applicable in distributed systems. The main issue is definitely the model:

158 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

It is an open problem to generalize the framework to the asynchronous model,
and to convert the used techniques accordingly. Furthermore, it might be inter-
esting to generalize the results to non-threshold adversary structures [HMO0].
Finally, it is questionable whether comparable efficiency improvements can be
achieved in a model with mobile adversaries, where player elimination seems not
to be applicable.

References

[BB8Y)

[Bea91a]

[Bea91b)]

[BFKR90)

[BGP8Y)

[BGWSS]

[BMRI0]

[Can00]

[CCDSS]

[CDD™99]

[CDMO00]

[CDNOO]

[CHY4]

J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds of interaction. In Proc. 8th ACM Symposium
on Principles of Distributed Computing (PODC), pp. 201-210, 1989.

D. Beaver. Efficient multiparty protocols using circuit randomization. In
Advances in Cryptology — CRYPTO 91, vol. 576 of LNCS, pp. 420—432,
1991.

D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75-122, 1991.

D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low
communication overhead (extended abstract). In Advances in Cryptology
— CRYPTO ’90, pp. 62-76, 1990.

P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed
consensus (extended abstract). In Proc. 21st IEEE Symposium on the
Foundations of Computer Science (FOCS), pp. 410-415, 1989. Expanded
version: Bit optimal distributed consensus. In Computer Science Research,
1992.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing (STOC), pp. 1-10, 1988.
D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols (extended abstract). In Proc. 22nd ACM Symposium on the
Theory of Computing (STOC), pp. 503-513, 1990.

R. Canetti. Security and composition of multi-party cryptographic proto-
cols. Journal of Cryptology, 13(1):143-202, 2000.

D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally se-
cure protocols (extended abstract). In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pp. 11-19, 1988.

R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and T. Rabin. Effi-
cient multiparty computations secure against an adaptive adversary. In
Advances in Cryptology — EUROCRYPT ’99, vol. 1592 of LNCS, pp.
311-326, 1999.

R. Cramer, I. Damgard, and U. Maurer. General secure multi-party com-
putation from any linear secret sharing scheme. In Advances in Cryptology
— EUROCRYPT 00, vol. 1807 of LNCS, pp. 316-334, 2000.

R. Cramer, I. Damgard, and J. B. Nielsen. Multiparty computation from
threshold homomorphic encryption. Manuscript, 2000.

R. Canetti and A. Herzberg. Maintaining security in the presence of tran-
sient faults. In Advances in Cryptology — CRYPTO ’94, vol. 839 of LNCS,
pp- 425-438, 1994.

[CKS00]

[CW8Y]

[DFF*82]

[DR85)

[DRS82]

[FHMOS]

[FMSS]

[FY92]

[GHYS7]

[GMWS7]

[GRROS]

[HHY1]

[HMO0]

[MROS]

Efficient Secure Multi-party Computation 159

C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
In Proc. 19th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 123-132, 2000.

B. A. Coan and J. L. Welch. Modular construction of nearly optimal
Byzantine agreement protocols. In Proc. 8th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 295-305, 1989. Expanded
version: Modular construction of a Byzantine agreement protocol with op-
timal message bit complexity. In Information and Computation, 97(1):61-
85, 1992.

D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong. An
efficient algorithm for Byzantine agreement without authentication. Infor-
mation and Control, 52(3):257-274, 1982.

D. Dolev and R. Reischuk. Bounds on information exchange for Byzantine
agreement. Journal of the ACM, 32(1):191-204, 1985.

D. Dolev, R. Reischuk, and H. R. Strong. ‘Eventual’ is earlier than ‘Im-
mediate’. In Proc. 28rd IEEE Symposium on the Foundations of Com-
puter Science (FOCS), pp. 196-203, 1982. Final version: Early Stopping
in Byzantine Agreement. In Journal of the ACM, 37(4):720-741, October
1990.

M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in
unconditional multi-party computation. In Advances in Cryptology —
CRYPTO 98, vol. 1462 of LNCS, pp. 121-136, 1998.

P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement.
In Proc. 20th ACM Symposium on the Theory of Computing (STOC),
pp. 148-161, 1988. Expanded version in SIAM Journal on Computing
26(4):873-933, August 1997.

M. K. Franklin and M. Yung. Communication complexity of secure com-
putation. In Proc. 24th ACM Symposium on the Theory of Computing
(STOC), pp. 699-710, 1992.

Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In Advances in Cryptology
— CRYPTO °87, vol. 293 of LNCS, pp. 135-155. Springer-Verlag, 1987.
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game — a completeness theorem for protocols with honest majority. In
Proc. 19th ACM Symposium on the Theory of Computing (STOC), pp.
218-229, 1987.

R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptogra-
phy. In Proc. 17th ACM Symposium on Principles of Distributed Comput-
ing (PODC), 1998.

V. Hadzilacos and J. Y. Halpern. Message-optimal protocols for byzantine
agreement. In Proc. 10th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 309-324, 1991. Final version in Mathematical
Systems Theory, 26:41-102, October 1993.

M. Hirt and U. Maurer. Player simulation and general adversary structures
in perfect multiparty computation. Journal of Cryptology, 13(1):31-60,
2000. Extended abstract in Proc. 16th of ACM PODC ’97.

S. Micali and P. Rogaway. Secure computation: The information theo-
retic case. Manuscript, 1998. Former version: Secure computation, In Ad-

160 Martin Hirt, Ueli Maurer, and Bartosz Przydatek

vances in Cryptology — CRYPTO 91, volume 576 of LNCS, pp. 392-404,
Springer-Verlag, 1991.

[0Y91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (ex-
tended abstract). In Proc. 10th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 51-59, 1991.

[Prz99] B. Przydatek. Efficiency in multi-party computation. Master’s thesis, ETH
Zurich, 1999.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228-234, 1980.

[RB8Y] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty proto-
cols with honest majority. In Proc. 21st ACM Symposium on the Theory
of Computing (STOC), pp. 73-85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612—
613, 1979.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Sym-
posium on the Foundations of Computer Science (FOCS), pp. 160-164.
IEEE, 1982.

A Security Flaw in [GRR98]

In Appendix B (“Computing Multiplication with Faults”) of [GRR98}E| a very
efficient sub-protocol was proposed for proving that for three shared values a, b,
and ¢, the equation ¢ = ab holds. This sub-protocol was intended to replace the
(rather inefficient) verification sub-protocol (“tool (II)”) of [BGWS8E|. We show
in the sequel that this new sub-protocol of [GRR9S§]| is insecure. First we briefly
summarize the protocol and then demonstrate the security flaw.

Assume that player P has shared the values a, b, and ¢ with polynomials f(z),
g(x), and h(z) respectively, all of degree at most ¢. Let a;, b;, and ¢; denote the
corresponding shares of player P;, i = 1,...,n. The protocol of [GRRI]] works
as follows:

1. The dealer P shares (using “normal” secret sharing, not VSS) a random
value with a polynomial r(x) of degree 2t — 1. The share r; of player P; is
r; = r(a;). Furthermore, P computes and broadcasts the polynomial R(z) =
x-r(x) + f(x) - g(x) — h(z). R(z) is a random polynomial of degree 2¢, and
if ¢ = ab holds then R(0) = 0.

2. Every player P; verifies that R(0) = 0 and R(w;) = oy - r; + a; - by — ¢;.
P; broadcasts either “OK”, if both checks were successful, or otherwise a
request to make his values public.

3. If in the previous step some requests occurred (at most t), P broadcasts all
the requested data. If there were more than ¢ requests, P is clearly cheating.

This protocol does not guarantee correctness, in contrast to what is claimed
in the paper and was believed before. The dealer P can pass this verification
even if ¢ = ab does not hold:

7 After the security problem was discovered, this appendix was deleted from the version
available online.

Efficient Secure Multi-party Computation 161

1. Instead of selecting a random polynomial r(z) of degree 2t — 1, the dealer
first selects a (random) polynomial R(x) of degree 2t with R(0) = 0, then
computes and distributes the “shares” ry,...,r, asr; = ai_l(R(ai) —a;-b;+
¢;). The dealer can do so because the degree of the polynomial r(x) cannot
be verified. Finally, P broadcasts the polynomial R(z).

Clearly, the checks in Step 2 of all players will succeed, and no (honest) player
will complain.

	Efficient Secure Multi-party Computation (Extended Abstract)
	Introduction
	Secure Multi-party Computation
	Efficiency Considerations
	Contributions
	Outline

	Framework for Efficient Resilient Protocols
	Introduction
	Incorporating Resilience into a Private Protocol

	Constructing Efficient Multi-party Computation Protocols
	Model
	Main Protocol
	Input Stage
	Computation Stage
	Output Stage

	Complexity Analysis
	Complexity of the New Protocol
	Comparison with Other Protocols

	Conclusions and Open Problems
	References
	Security Flaw in [GRR98]

