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Abstract. This paper introduces three new probabilistic encryption
schemes using elliptic curves over rings. The cryptosystems are based
on three specific trapdoor mechanisms allowing the recipient to recover
discrete logarithms on different types of curves. The first scheme is an
embodiment of Naccache and Stern’s cryptosystem and realizes a discrete
log encryption as originally wanted in [23] by Vanstone and Zuccherato.
Our second scheme provides an elliptic curve version of Okamoto and
Uchiyama’s probabilistic encryption, thus answering a question left open
in [10] by the same authors. Finally, we introduce a Paillier-like encryp-
tion scheme based on the use of twists of anomalous curves. Our con-
tributions provide probabilistic, homomorphic and semantically secure
cryptosystems that concretize all previous research works on discrete log
encryption in the elliptic curve setting.
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1 Introduction

At the present time, one of the most challenging open problems in cryptography
is certainly the realization of a trapdoor in the discrete logarithm problem. A
discrete-log (DL) encryption scheme over a group G intends to encrypt a plain-
text m by simply raising some base element g ∈ G to the powerm, while decryp-
tion recoversm up to a public bound1. Motivations for this may be diverse. The
main advantage in comparison to other public-key techniques such as RSA or El-
Gamal comes from the additive homomorphic property of ciphertexts (the group
product of encryptions of m1 and m2 yields an encryption of m1 + m2). This
property constitutes the necessary condition for many cryptographic protocols
to exist in fields like electronic voting [4], key escrow [13] or group signatures,
to quote a few. Clearly, discovering novel discrete-log encryption techniques has
a crucial positive impact on these research domains. In contrast, direct applica-
tions of these for simple encryption purposes may be of more moderate interest
1 the decryption is only expected to retrieve m modulo the given bound, i.e. the
trapdoor is partial.
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as malleability destroys chosen-ciphertext security anyway2. Without consider-
ing all potential applications, this paper focuses on providing and analyzing new
discrete log trapdoors and comparing their properties with the ones recently
discovered in [8,9,11].

High degree residuosity was introduced by Benaloh [1] as an algebraic frame-
work extending the properties of quadratic residuosity to prime degrees greater
than two. Since then, successive works have considerably improved the efficiency
of residuosity-based encryption. Naccache and Stern [8], utilizing a smooth de-
gree modulo n = pq, increased Benaloh’s encryption rate up to ≈ 1/5. More
recently, Okamoto and Uchiyama [9] and Paillier [11] came up with modulus-
independent encryption rates of 1/3 and 1/2 respectively, basing trapdoorness on
a joint use of Fermat quotients and clever parameter choices. Interestingly, these
three cryptosystems only stand in the multiplicative groups Z∗

n where n = pq,
p2q or p2q2 and p, q are large prime numbers.

There have been several attempts, in the meantime, to realize discrete-log
encryption over elliptic curves instead of standard groups. This was motivated
by the fact that no subexponential time algorithm for extracting discrete log-
arithms is known so far, at least for most elliptic curves3. As a matter of fact,
all such design proposals have revealed themselves unsuccessful. Vanstone and
Zuccherato [23] proposed a deterministic DL encryption scheme that was shown
to be insecure a few months later by McKee and Pinch [6] and Coppersmith [2].
Independently, Okamoto and Uchiyama failed in attempting to design DL en-
cryption over composite anomalous curves [10].

This paper introduces cryptosystems successfully answering the quests of [23]
and [10] respectively, with guaranteed semantic security relatively to well iden-
tified computational problems. The first scheme is an embodiment of Naccache
and Stern’s cryptosystem on curves defined over Zn (n = pq) which realizes
a discrete-log encryption as originally imagined by Vanstone and Zuccherato.
Probabilistic, the scheme is also provably semantically secure relatively to the
so-called high-degree residuosity problem. Our second cryptosystem relates to
the p-residuosity of a well-chosen curve over the ring Zp2q, that is, provides an
elliptic curve instance of Okamoto and Uchiyama’s encryption scheme. Finally,
we show how to extend the same design framework to Paillier encryption [11],
while preserving all security and efficiency properties inherent to the original
cryptosystem. All three schemes are reasonably efficient, simple to understand,
additively homomorphic, probabilistic and provably secure against chosen plain-
text attacks (IND-CPA) in the standard model. We believe our cryptosystems
to be the only ones that verify these properties.

Due to space limitations, we do not recall here the basics of high-degree
residuosity (neither do we give the description of the encryption schemes we

2 like for other cryptosystems however, security improvements are possible to reach
resistance against active adversaries, see [12].

3 it is known that there exist subexponential algorithms for curves of trace zero over
Fp for p prime. The discrete-log problem happens to be trivially polynomial in the
case of trace one, see [20].
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work with), referring the reader to the bibliography for further information when
needed.

2 Elliptic Curve Naccache-Stern Encryption

The first encryption scheme that we describe here is a variant of Naccache and
Stern’s encryption scheme [8] where the working group is an elliptic curve over
the ring Zn. The construction of such a curve is similar in spirit to the work of
Koyama, Maurer, Okamoto and Vanstone [5] that allowed to export factoring-
based cryptosystems like RSA [15] and Rabin [14] on a particular family of curves
over the ring Zn (KMOV). We now describe briefly their construction.

In the sequel, p and q denote distinct large primes of product n. Recall that
for any integer k, Ek(a, b) is defined as the set of points (x, y) ∈ Zk × Zk such
that

y2 = x3 + ax+ b mod k ,

together with a special element Ok called the point at infinity. It is known that
given a composite integer k, a curve Ek(a, b) defined over the ring Zk has no
reason to be a group. This problem, however, does not have real consequences in
practice when k = n because exhibiting a litigious addition leads to factor n and
this event remains of negligible probability. Furthermore, projections of En(a, b)
over Fp and Fq (namely, Ep(a, b) and Eq(a, b)) being finite abelian groups, the
Chinese remainder theorem easily conducts to the following statement:

Lemma 1 (Koyama et al. [5]). Let En(a, b) be an elliptic curve where n = pq
is the product of two primes such that gcd(4a3 + 27b2, n) = 1. Let us define the
order of En(a, b) as

|En(a, b)| = lcm(|Ep(a, b)|, |Eq(a, b)|) .

Then, for any point P ∈ En(a, b),

|En(a, b)| · P = On

where On denotes the point at infinity of En(a, b).

Although not being a group in a strict sense, the structure of the curve En(a, b)
complies to Lagrange’s theorem and, from this standpoint, can be used as a
group. Koyama et al. take advantage of this feature by focusing on curves of the
following specific form:

En(0, b) : y2 = x3 + b mod n for b ∈ Z
∗
n ,

with p ≡ q ≡ 2 (mod 3). This is motivated by the fact that the projected curves
Ep(0, b) and Eq(0, b) happen to be of trace of Frobenius equal to zero. More
specifically,
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Lemma 2. Let p be an odd prime satisfying p ≡ 2 (mod 3). Then, for all b ∈
[1, p− 1], Ep(0, b) is a cyclic group of order

|Ep(0, b)| = p+ 1 .

Subsequently, the problem of recovering |En(0, b)| = lcm(p+1, q+1) from n
is equivalent to factoring n when p ≡ q ≡ 2 (mod 3). Note that another possible
choice of parameters are curves En(a, 0) for a ∈ Z

∗
n and p ≡ q ≡ 3 (mod 4). We

refer the reader to [5] for further details.

2.1 Our Setting

Just as above, for some b ∈ Z
∗
n, we will be considering the curve En(0, b) as a

finite abelian group of order

µ = |En(0, b)| = lcm(p+ 1, q + 1) .

In our setting, the prime factors p and q are both chosen congruent to 2 modulo
3 so that, by virtue of lemma 2, the two curves Ep(0, b) and Eq(0, b) are cyclic
groups of respective orders p+ 1 and q + 1. We also impose

p+ 1 = 6 · u · p′ where u =
∏

pδi

i and (1)

q + 1 = 6 · v · q′ where v =
∏

p
δj

j , (2)

for some B-smooth integers u and v of (roughly) equal bitsize such that

gcd(6, u, v, p′, q′) = 1

and B = O(log n). Integers p′ and q′ are taken prime. The whole construction
is closely related to Naccache and Stern’s encryption scheme [8]. In our case, we
focus on base points of En(0, b) of order a multiple of σ = uv. If G is such a
point, then one could envision to encrypt some plaintext m ∈ Zσ by

m 	−→ m ·G+ σ ·R where R ∈R En(0, b) , (3)

and decrypt by computing the residuosity class with respect to G. Because σ was
chosen to be smooth, computing discrete logarithms for a base of degree σ can be
efficiently done using the baby-step giant-step algorithm combined with Pohlig
and Hellman’s method. Thus, one can compute residuosity classes on En(0, b) in
polynomial time provided that µ is known, i.e. knowing the factors of n. There
still remains the problem of randomly choosing an element R ∈R En(0, b) during
encryption: the spontaneous creation of an arbitrary point seems to require either
the computation of a quadratic root of R3

x + b with Rx ∈R Zn (equivalent to
the knowledge of the factors), or the computation of 3

√
R2

y − b with Ry ∈R Zn
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(equivalent to RSA on Z∗
n with e = 3). An elegant solution4 consists in modifying

the encryption function so that m ∈ Zσ is now encrypted as

m 	−→ C = (m+ σr) ·G with r ∈R Zn ,

and decryption necessitates to compute the discrete logarithm of (µ/σ) ·C with
respect to the base G′ = (µ/σ) · G, which is done as previously discussed since
G′ is of smooth order σ. The so-obtained probabilistic encryption scheme is
described more precisely hereafter.

Our parameter generation process is very similar to Naccache and Stern’s.
One chooses two B-smooth integers u and v of product σ such that logσ =
O(logε n) with ε > 0. For practical use, one sets as in [8] �log2 σ� = 160 and
B ≈ 210. Prime numbers p and q are then generated according to equations 1
and 2. The choice of b is arbitrary in Z∗

n: we recommend a small constant value
such as b = 1 which renders point additions easier. The base point G can be
chosen of maximal order µ = lcm(p+ 1, q + 1), computed separately mod p and
mod q, and recombined at the very end by Chinese remaindering.

Public key n, b, σ, G.

Private key (p, q) or µ = lcm(p+ 1, q + 1).

Encryption plaintext m ∈ Zσ,
pick a random r < n,
ciphertext C = (m+ σr) ·G.

Decryption compute u = (µ/σ) · C = m ·G′.
Use Pohlig-Hellman and baby-step giant-step
to compute the discrete log of u in base G′.

Decryption can also be performed over Ep(0, b) and Eq(0, b): in this case, one
separately computesm mod u andm mod v. The plaintextm is then recovered
modulo σ by Chinese remaindering.

2.2 Security Analysis

Clearly, inverting the encryption function of our scheme is equivalent to com-
puting residuosity classes on En(0, b), and the semantic security is equivalent to
the decisional version of the same problem. By analogy with [8], we conjecture
that these two problems are actually intractable.

Note also that the scheme can be made deterministic by setting r = 0 in
the encryption function. We therefore have C = m · G like in Vanstone and
Zuccherato’s cryptosystem [23]. This variant is of moderate interest as it looses
semantic security.
4 alternatively, one can pick random coordinates for R and then select the coefficient
b as b = R2

y −R3
x mod n. During decryption, b is recovered by b = C2

y −C3
x. In this

event, the scheme relies on a family of curves, see [5].
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2.3 Implementation Aspects

We analyze briefly the performances of our encryption scheme. Note first that
since Ep(0, b) and Eq(0, b) are cyclic and G chosen of maximal order, the cipher-
text space is En(0, b) itself. The expansion rate is therefore ρ = 2�log2 n�/�log2 σ�
i.e. twice the one of Naccache and Stern’s cryptosystem. This is due to the fact
that the ciphertext has two coordinates modulo n. For instance, we have ρ ≈ 10
when �log2 n� = 768 and �log2 σ� = 160. One way to increase the encryption
bandwidth is to transmit only one ciphertext coordinate. Transmitting Cy, Cx

is recovered before decryption by extracting the cubic root of C2
y − b mod n.

Transmitting Cx, decryption leads to exactly four message solutions: necessar-
ily, 2 redundant bits have then to be included in the plaintext to eradicate any
decryption ambiguity. This is similar to Rabin encryption [14].

3 Elliptic Curve Okamoto-Uchiyama Encryption

In this section, we show how to extend the setting defined in [9] to the one of
elliptic curves. In particular, the technique we suggest addresses an open question
described in [10].

It is known that curves Ep(a, b) over Fp which have trace of Frobenius one
(they are said to be anomalous) present the property that computing discrete
logarithms on them is very easy. To be more precise, such an extraction requires
a linear number of field operations over Fp , i.e. O(log3 p) bit operations. This
was studied by several authors [20,19,22]. Okamoto et al. [10] attempted to
take advantage of this feature to design an identity-based cryptosystem, but
due to |Ep(a, b)| = p, we believe that this property can hardly be captured
so directly into a properly secure encryption scheme. Instead, we extend the
discrete logarithm recoverability property to a p-subgroup of Ep2(a, b) so that
the projection onto Fp gives the twist of an anomalous curve. This is done as
follows. We begin by stating a few useful facts that derive from Hasse’s theorem.

Lemma 3. Let Ep(a, b) : y2 = x3 +ax+ b mod p be an elliptic curve of order
|Ep(a, b)| = p+1− t where |t| ≤ 2

√
p. Then for any integers a, b such that a = a

mod p and b = b mod p, we have

|Ep2(a, b)| = (p+ 1− t)(p+ 1 + t) .

The curve Ep2(a, b) is usually said to be a lift of Ep(a, b) to Fp2 . One consequence
of lemma 3 is that if Ep(a, b) has p+2 points, then any lift Ep2(a, b) must be of
order p(p+ 2).

Lemma 4. Let Ep(a, b) be an elliptic curve over Fp of order p + 2. Provided
that p ≡ 2 (mod 3), any lift Ep2(a, b) of Ep(a, b) to Fp2 is cyclic.
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Proof. Let Ep2(a, b) be a non-cyclic lift of Ep(a, b). From Rück’s theorem [17],
we know that Ep2(a, b) = Zd1 ×Zd2 with d1|d2, d1 > 1 and d1|p2 − 1. By virtue
of lemma 3, we must have d1d2 = p(p+ 2). Therefore, d1 divides

gcd(p+ 2, p2 − 1) = gcd(p+ 2, p− 1) = gcd(3, p− 1) ,

which implies d1 = 3 or 1. Since d1 �= 1 and p = 2 + 3η for some integer η, we
get the contradiction 3|(1 + 3η). Hence Ep2(a, b) must be cyclic. ��
In what follows, p denotes a large prime verifying p ≡ 2 (mod 3), Ep(a, b) stands
for a curve of order p+ 2 and Ep2(a, b) is some lift of Ep(a, b) to Fp2 . We note

E[p] = (p+ 2) · Ep2(a, b)

the (cyclic) p-torsion subgroup formed by the points of order dividing p, i.e.
points of order p together with the point at infinity Op2 of Ep2(a, b). We state:

Theorem 1. There exist a polynomial time algorithm that computes discrete
logarithms on E[p] with complexity at most O(log3 p).

Proof. Since E[p] is the group of p-torsion points of Ep2(a, b), we could apply
Semaev’s algorithm [20] stricto sensu. We rather rely on a (simpler) elliptic-
log-based approach similar to Smart’s [22] as follows. Observe that any point P
belongs to E[p] if (and only if) it is a lift of Op ∈ Ep(a, b), wherefrom E[p] is the
kernel of the reduction map P 	→ P mod p. Hence the p-adic elliptic logarithm
(see [21, p. 175])

ψp(x, y) = −x

y
mod p2

is well-defined and can be applied on any point of E[p]. ψp being actually a
morphism, if P = m ·G stands for any arbitrary points P,G ∈ E[p], we have

m =
ψp(P )
ψp(G)

mod p ,

provided thatG �= Op2 . The main computational workload stands in the modular
divisions which require at most O(log3 p) bit operations. ��

Note that other approaches such as Satoh and Araki’s [19] or Rück [16],
in application to our case, would have led to somehow equivalent computation
methods.

3.1 Description

This section shows how to realize an analogue of Okamoto and Uchiyama’s en-
cryption scheme [9] on elliptic curves, in the sense wanted by the same authors
in [10]. We make use of our previous results as follows.

One first chooses two large primes p (with p ≡ 2 (mod 3)) and q of bitsize k,
and sets n = p2q. The user then picks integers ap, bp ∈ Fp such that Ep(ap, bp) is
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of order p+2, using techniques such as [7]. He then chooses some lift Ep2(ap, bp)
of Ep(ap, bp) to Fp2 , as well as a random curve Eq(aq, bq) defined over Fq . Using
Chinese remaindering, the user combines Ep2(ap, bp) and Eq(aq, bq) to get the
curve En = En(a, b) where a, b ∈ Zn. Finally, the user picks a point G ∈ En

of maximal order lcm(|Ep2 |, |Eq|) and sets H = n · G. Our cryptosystem is as
depicted below.

Public key n = p2q, En, G of maximal order, H = n ·G.
Private key p.

Encryption plaintext m < 2k−1,
pick a random r < 22k,
ciphertext C = m ·G+ r ·H

Decryption compute m =
ψp((p+ 2) · C)
ψp((p+ 2) ·G) mod p .

Our system is very similar in spirit to Okamoto and Uchiyama’s encryption as
originally discovered. For this reason, most properties of their scheme still apply
to ours: in particular, chosen ciphertext security can be easily shown equivalent
to factoring n = p2q. The proof of this fact is a straightforward adaptation of
Okamoto and Uchiyama’s, see [9]. Besides, one-wayness and semantic security
remain effective, except that they rely on problems related to high (p-degreed)
residuosity on En instead of Z∗

n. The scheme also features additive homomorphic
properties for short messages.

4 Elliptic Curve Paillier Encryption

In this section, we refine the previous encryption technique to meet more ad-
vanced security requirements: we show how to construct an efficient yet natural
embodiment of Paillier’s cryptosystem [11] on elliptic curves. We first extend the
setting of section 3 to curves defined over Zn2 where n = pq. Suppose Ep2(ap, bp)
(resp. Eq2(aq, bq)) is some lift of a curve of trace p+2 (resp. q+2) defined over Fp

(resp. Fq ). Considering En2(a, b) as the Chinese remaindering of Ep2(ap, bp) and
Eq2(aq, bq) (hence it is defined over the ring Zn2), it is easily seen that En2(a, b)
is of order nµ where

µ = µ(n) = lcm(p+ 2, q + 2) .

We extend theorem 1 up to the present setting as follows. Noting

E[n] = µ ·En2(a, b) ,

we state:

Corollary 1 (of theorem 1). There exist a polynomial time algorithm that
computes discrete logarithms on E[n] with complexity O(log3 n).
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Proof. This is easily proven, either by applying theorem 1 twice on curves E[p] �
E[n] mod p2 and E[q] � E[n] mod q2 and then by Chinese remaindering local
logarithms, or more compactly by defining over E[n] an n-adic elliptic logarithm

ψn(x, y) = −x

y
mod n2 .

Provided that P = m · G for P,G ∈ E[n] and G �= On2 , we retrieve m by
computing

m =
ψn(P )
ψn(G)

mod n .

��
Here is how the cryptosystem is initialized: the user chooses two large primes

p and q (with p ≡ q ≡ 2 (mod 3)) and sets n = pq. He then picks up integers ap,
bp ∈ Fp and aq, bq ∈ Fq such that Ep(ap, bp) is of order p+2 and Eq(aq, bq) is of
order q + 2. Lifted curves Ep2(ap, bp) and Eq2(aq, bq) are chosen and combined
to get En2 = En2(a, b). Finally, a base point G ∈ En2 is chosen of order divisible
by n, possibly of maximal order nµ.

Public key n = pq, En2 , G.

Private key µ = lcm(p+ 2, q + 2) or equivalently (p, q).

Encryption plaintext m ∈ Zn,
pick a random r < n,
ciphertext C = (m+ nr) ·G

Decryption compute m =
ψn(µ · C)
ψn(µ ·G) mod n .

Note that, due to lemma 4, the ciphertext space covers the entire curve
En2 i.e. , any point of En2 is the image of some plaintext. We therefore have
a maximal encryption bandwidth. This is obtained thanks to the fact that all
curves we work with are cyclic.

4.1 Security Analysis

Here again, the very high resemblance of our encryption scheme with [11] implies
that most cryptographic features happen to be identical in the two cases. The
one-wayness of our scheme is equivalent to the problem of computing residuosity
classes over En2 which, provided that n is hard to factor, we conjecture to be
intractable5. Similarly, semantic security relates to the indistinguishability of n-
residues of En2 , i.e. points belonging to E[µ] = n ·En2 , from other points of the
curve. We conjecture this problem to be intractable as well.

Our scheme is clearly malleable, and as such, does not resist adaptive chosen-
ciphertext attacks. We believe, however, that security enhancement techniques
such as [12] could be applied mutatis mutandis to meet provable security at the
strongest level NM-CCA2.
5 this is similar to the Composite Residuosity Assumption over Z∗

n2, see [11,12].
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4.2 Implementation Aspects

Slight modifications of our encryption scheme may allow significant cost savings:
a typical implementation speed-up is obtained by choosing a base point G of
order nα with α = αpαq, where

αp| p+ 2, αp � | q + 2, αq| q + 2, αq � | p+ 2 ,

and �log2 α� is fixed to 160 for practical use. The decryption process is then
advantageously replaced by

m =
ψn(α · C)
ψn(α ·G) mod n

where the main computational workload is now a single scalar multiplication6

by a short 160-bit constant. Chinese remaindering can also be used during de-
cryption.

4.3 Homomorphic Properties

Our encryption scheme is (+,+)-homomorphic, i.e. an elliptic curve addition of
two or several ciphertexts induces the implicit modular addition of the corre-
sponding plaintexts. It also allows self-blinding, that is, provides the ability to
publicly randomize a given ciphertext while conserving the correspondence with
the initial plaintext. Finally, just like other known one-way trapdoor morphisms,
the scheme provides random self-reducible encryption [3,18].

5 Conclusions

This paper introduced three new probabilistic encryption schemes on elliptic
curves over rings. The cryptosystems are based on three specific trapdoor mech-
anisms allowing the recipient to recover discrete logarithms on different types of
curves. More specifically, we showed how to design embodiments of Naccache-
Stern, Okamoto-Uchiyama and Paillier discrete-log encryption schemes. Each
provided cryptosystem is probabilistic and semantically secure relatively to the
high residuosity problem associated with its curve type. We believe our work
positively concretizes all previous research works on discrete log encryption in
the elliptic curve setting.
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