Skip to main content

Is the Standard Proof System for SAT P-Optimal?

Extended Abstract

  • Conference paper
  • First Online:
FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1974))

Abstract

We investigate the question whether there is a (p-)optimal proof system for SAT or for TAUT and its relation to completeness and collapse results for nondeterministic function classes. A p-optimal proof system for SAT is shown to imply (1) that there exists a complete function for the class of all total nondeterministic multi-valued functions and (2) that any set with an optimal proof system has a p-optimal proof system. By replacingthe assumption of the mere existence of a (p-) optimal proof system by the assumption that certain proof systems are (p-)optimal we obtain stronger consequences, namely collapse results for various function classes. Especially we investigate the question whether the standard proof system for SAT is p-optimal. We show that this assumption is equivalent to a variety of complexity theoretical assertions studied before, and to the assumption that every optimal proof system is p-optimal. Finally, we investigate whether there is an optimal proof system for TAUT that admits an effective interpolation, and show some relations between various completeness assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. José Luis Balcázar, Josep Díaz, and Joaquim Gabarró. Structural Complexity I. Springer-Verlag, 2nd edition, 1995.

    Google Scholar 

  2. Ronald V. Book, Timothy J. Long, and Alan L. Selman. Quantitative relativizations of complexity classes. SIAM Journal on Computing, 13(3):461–487, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  4. Pierluigi Crescenzi, Viggo Kann, Riccardo Silvestri, and Luca Trevisan. Structure in approximation classes. SIAM Journal on Computing, 28(5):1759–1782, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. Stephen A. Fenner, Lance Fortnow, Ashish V. Naik, and John D. Rogers. Invertingonto functions. In Proceedings of the 11th Conference on Computational Complexity, pages 213–222. IEEE, 1996.

    Google Scholar 

  6. Lance Fortnow and John D. Rogers. Separability and one-way functions. In Proceedings of the 5th International Symposium on Algorithms and Computation, LNCS #834, pages 396–404. Springer-Verlag, 1994.

    Google Scholar 

  7. Joachim Grollmann and Alan L. Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman. Computingsolu tions uniquely collapses the polynomial hierarchy. In Proceedings of the 5th International Symposium on Algorithms and Computation, LNCS #834, pages 56–64. Springer-Verlag, 1994.

    Google Scholar 

  9. Russel Impagliazzo and Moni Naor. Decision trees and downward closures (extended abstract). In Proceedings of the Third Conference on Structure in Complexity Theory, pages 29–38. IEEE, 1988.

    Google Scholar 

  10. Ker-I Ko. On some natural complete operators. Theoretical Computer Science, 37:1–30, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  11. Johannes Köbler and Jochen Messner. Complete problems for promise classes by optimal proof systems for test sets. In Proceedings of the 13th Conference on Computational Complexity, pages 132–140. IEEE, 1998.

    Google Scholar 

  12. Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–1079, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  13. Jan Krajíček and Pavel Pudlák. Some consequences of cryptographical conjectures for S 1 2 and EF. In D. Leivant, editor, Logic and Computational Complexity, LNCS #960, pages 210–220. Springer-Verlag, 1995.

    Google Scholar 

  14. Timothy J. Long. On γ-reducibility versus polynomial time many-one reducibility. Theoretical Computer Science, 14:91–101, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  15. Jochen Messner. On optimal algorithms and optimal proof system. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science, LNCS#1563. Springer-Verlag, 1999.

    Google Scholar 

  16. Jochen Messner and Jacobo Torán. Optimal proof systems for propositional logic and complete sets. In Proceedings of the 15th Symposium on Theoretical Aspects of Computer Science, LNCS #1373, pages 477–487. Springer-Verlag, 1998.

    Google Scholar 

  17. Christos H. Papadimitriou. Computatational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  18. Alexander A. Razborov. On provably disjoint NP-pairs. Technical Report RS-94-36, Basic Research in Computer Science Center, Aarhus, 1994.

    Google Scholar 

  19. Zenon Sadowski. On an optimal quantified propositional proof system and a complete language for NP ∩ co-NP. In Proceedings of the 11th International Symposium on Fundamentals of Computing Theory, LNCS #1279, pages 423–428. Springer-Verlag, 1997.

    Google Scholar 

  20. Zenon Sadowski. On an optimal deterministic algorithm for SAT. In Proceedings of the 12th Annual Conference of the European Association for Computer Science Logic, CSL’ 98, LNCS #1584, pages 179-187. Springer-Verlag, 1999.

    Google Scholar 

  21. Uwe Schöning. Complexity and Structure, LNCS #211. Springer-Verlag, 1985.

    Google Scholar 

  22. Uwe Schöningan and Jacobo Torán. A note on the size of craigin terpolants, 1996. Unpublished manuscript.

    Google Scholar 

  23. Alan L. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System Sciences, 48(2):357–381, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  24. Leslie G. Valiant. Relative complexity of checkingan and evaluating. Information Processing Letters, 5(1):20–23, 1976.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köbler, J., Messner, J. (2000). Is the Standard Proof System for SAT P-Optimal?. In: Kapoor, S., Prasad, S. (eds) FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2000. Lecture Notes in Computer Science, vol 1974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44450-5_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-44450-5_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41413-1

  • Online ISBN: 978-3-540-44450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics