Abstract
We introduce a strict hierarchy \( \{ \mathbb{L}_n^\mathcal{B} \} \) of language classes which exhausts the class of starfree regular languages. It is shown for all n ≥ 0 that the classes \( \mathbb{L}_n^\mathcal{B} \) have decidable membership problems. As the main result, we prove that our hierarchy is levelwise comparable by inclusion to the dot-depth hierarchy, more precisely, \( \mathbb{L}_n^\mathcal{B} \) contains all languages having dot-depth n +1...2. This yields a lower bound algorithm for the dot-depth of a given language. The same results hold for a hierarchy \( \left\{ {\mathbb{L}_n^\mathcal{L} } \right\}\) and the Straubing-Thérien hierarchy.
Supported by the Studienstiftung des Deutschen Volkes.
Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Wa 847/4-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer Science, 91: 71–84, 1991.
J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite. Journal of Computer and System Sciences, 16: 37–55, 1978.
R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and System Sciences, 5: 1–16, 1971.
S. Eilenberg. Automata, languages and machines, volume B. Academic Press, New York, 1976.
C. Glaßer. A normal form for classes of concatenation hierarchies. Technical Report 216, Inst. für Informatik, Univ. Würzburg, 1998.
C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In Proceedings 17th STACS, volume 1770 of LNCS, pages 555–566. Springer Verlag, 2000.
R. Knast. A semigroup characterization of dot-depth one languages. RAIRO Inform. Théor., 17: 321–330, 1983.
J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, volume I, pages 679–746. Springer, 1996.
J.-E. Pin. Bridges for concatenation hierarchies. In Proceedings 25th ICALP, volume 1443 of LNCS, pages 431–442. Springer Verlag, 1998.
J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of computing systems, 30: 383–422, 1997.
I. Simon. Piecewise testable events. In Proceedings 2nd GI Conference, volume33 of Lecture Notes in Computer Science, pages 214–222. Springer-Verlag, 1975.
H. Straubing. A generalization of the Schützenberger product of finite monoids. Theoretical Computer Science, 13: 137–150, 1981.
H. Straubing. Finite semigroup varieties of the form V * D. J.Pure Appl.Algebra, 36: 53–94, 1985.
H. Straubing. Semigroups and languages of dot-depth two. Theoretical Computer Science, 58: 361–378, 1988.
D. Thérien. Classification of finite monoids: the language approach. Theoretical Computer Science, 14: 195–208, 1981.
W. Thomas. An application of the Ehrenfeucht-Fraïssé game in formal language theory. Société Mathématique de France, mémoire 16, 2: 11–21, 1984.
P. Weil. Some results on the dot-depth hierarchy. Semigroup Forum, 46: 352–370, 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gla\er, C., Schmitz, H. (2000). Decidable Hierarchies of Starfree Languages. In: Kapoor, S., Prasad, S. (eds) FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2000. Lecture Notes in Computer Science, vol 1974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44450-5_41
Download citation
DOI: https://doi.org/10.1007/3-540-44450-5_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41413-1
Online ISBN: 978-3-540-44450-3
eBook Packages: Springer Book Archive