Abstract
We introduce an integrated framework for Knowledge Discovery in Databases (KDD) and Knowledge Management and show how Knowledge Management can complement KDD. Specifically, we examine methods how to improve the knowledge intensive and weak structured process of KDD through the use of an experience factory using the method of experience packaging and case based reasoning (CBR).
This paper investigates how knowledge contained in the textual components of experience packages can be used to improve the retrieval of lessons learned in KDD. We add textual CBR techniques to our CBR approach in order to improve the case retrieval mechanism of the experience factory. Our technique exploits domain-specific knowledge contained in the textual parts of the packages to find better reuse candidates of lessons learned in KDD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aamodt, A. Plaza, E.: ”Case-basedreasoning: Foundational issues, methodological variations, and system approaches”. AI-Communications, 7(1), 39–59, 1994.
Althoff, K.-D. and Nick, M. and Tautz, C.: ”Concepts for reuse in the experience factory and their implementation for CBR system development”. In Proceedings of the Eleventh German Workshop on Machine Learning, August 1998.
Bach, V., Vogler, P. Oesterle, H.: ”Business Knowledge Management”, Springer, 1999.
Bartlmae, K.: ”An Experience Factory Approach for Data Mining”. In Proceedings of the second Workshop: ”Data Mining und Data Warehousing als Grundlage Entscheidungsun-terstützender Systeme (DMDW99)”, Univ. Magdeburg, September 1999.
Bartlmae, K.: ”A CBR based Experience Factory for Data Mining”. In Proceedings of the International Computer Science Conference (ICSC’99): Internet Applications, Lecture Notes of Computer Science, Hong Kong. Springer, Dezember 1999.
Bergmann, R., Breen, S., Göker, M., Manago, M., Wess, S.: ”Developing Industrial Case-Based Reasoning Applications”. Lecture Notes in Artificial Intelligence 1612, Springer; Berlin, Heidelberg, New York, 1999
Basili, V. R., Caldiera, G., Rombach., H D.: ”Experience Factory”. In John J. Marciniak, editor, Encyclopedia of Software Engineering, vol. 1, pp. 528–532. John Wiley and Sons, 1994.
Brachman, R.J.; Anand, T.: ”The Process of Knowledge Discovery in Databases: A Human-Centered Approach”. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurasamy, R. (eds.). Advances in Knowledge Discovery and Data Mining. AAAI /MIT Press, 1996.
Berry, M.J.A., Linhoff, G.: ”Data Mining Techniques. For Marketing, Sales and Customer Support”. Wiley Computer Publication, 1997
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J, Zanasi, A.: ”Discovering Data Mining. From Concept To Implementaion”. Prentice Hall, Upper Saddle River, New Jeresey 07458, 1998.
Cho, J.R., Mathews, R.C.: ”Interactions Between Mental Models Used in Categorization and Experiential Knowledge of Specific Cases”. The Journal of Experimental Psychology, 49A(3), 1996.
CRISP-DM, March 1999, DaimlerChrysler, Forschung und Technologie, 1999, http://www.ncr.dk/CRISP.
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: ”Form Data Mining to Knowledge Discovery: An Overview”. In: U. Fayyad, G. Piatetsky-Shapiro, P Smyth, and R. Uthurusamy editors, Advances in Knowledge Discovery and Data Mining. MIT Press, Cambrige, MA, 1995.
Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.: ”The KDD Process for Extracting Useful Knowledge from Volumes of Data”. In Communications of the ACM, November 1996, Vol. 39, No. 11, pp. 27–34, 1996.
Gresse von Wangenheim, C., Moraes, A. R., Althoff, K.-D., Barcia, R. M., Weber, R., Martins, A.: ”Case-Based Reasoning Approach to Reuse of Experiential Knowledge in Soft-ware Measurement Programs”. Proc. of the 6th German Workshop on Case-Based Reasoning, Berlin, Germany, 1998.
Hand, D. J.: ”Construction and Assessment of Classification Rules”. John Wiley and Sons Ltd., Sussex, England, 1997.
Heisig.: ”Wissensmanagement in Deutschland und Europa-Stand und Entwicklung. Ergeb-nisse und TOP 200 europ”aischen Unternehmen”. In: R. Schmidt (Ed.), 21. Online Tagung der DGI: Aufbruch ins Wissensmanagement, Deutsche Gesellschaft f”ur Informationswis-senschaft und Informationspraxis (DGI), 1999.
Hipp, Lindner: ”Analysing Warranty Claims of Automobiles. An Application Description Following the CRISP-DM Data Mining Process”. In Proceedings of the ICSC’99, Springer, December 1999.
Houdek, F., Bunse, C.: ”Transfering Experience: A Practical Approach and its Application on Software Inspection”. IESE-Report No. 008.99/E, Fraunhofer Institut, 1999.
Lenz, M., Hbner, A., and Kunze, M.: ”Textual CBR” in: Lenz, M., Bartsch-Spörl, B., Burkhardt, H.D., Wess, S. (Eds.): Case Based Reasoning Technology, From Foundations to Applications ”. Lecture Notes in Artificial Intelligence, Vol. 1400, Springer, Berlin, Hamburg, 1998.
Probst, G., Raub, S., Romhardt, K.: ”Wissen Managen”, Gabler, 1999.
Reinartz, T., and Wirth, R.: ”The Need for a Task Model for Knowledge Discovery in Databases”. In: Kodratoff, Y., Nakhaeizadeh, G., and Taylor, C. (eds.). Workshop Notes Statistics, Machine Learning, and Knowledge Discovery in Databases. MLNet Familiarization Workshop, April, 28–29, Heraklion, Crete, pp. 19–24, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bartlmae, K., Lanquillon, C. (2000). A KDD Experience Factory: Using Textual CBR for Reusing Lessons Learned. In: Ibrahim, M., Küng, J., Revell, N. (eds) Database and Expert Systems Applications. DEXA 2000. Lecture Notes in Computer Science, vol 1873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44469-6_68
Download citation
DOI: https://doi.org/10.1007/3-540-44469-6_68
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67978-3
Online ISBN: 978-3-540-44469-5
eBook Packages: Springer Book Archive