Skip to main content

Projective Reconstruction from N Views Having One View in Common

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1883))

Abstract

Projective reconstruction recovers projective coordinates of 3D scene points from their several projections in 2D images. We introduce a method for the projective reconstruction based on concatenation of trifocal constraints around a reference view. This configuration simplifies computations significantly. The method uses only linear estimates which stay “close” to image data. The method requires correspondences only across triplets of views. However, it is not symmetrical with respect to views. The reference view plays a special role. The method can be viewed as a generalization of Hartley”s algorithm [11], or as a particular application of Triggs’ [21] closure relations.

This research is supported by the Grant Agency of the Czech Republic under the grants 102/97/0480, 102/97/0855, and 201/97/0437, and by the Czech Ministry of Education under the grant VS 96049.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Avidan and A. Shashua. Threading fundamental matrices. In ECCV-98, Frieburg, Germany, June 1998. Springer-Verlag.

    Google Scholar 

  2. P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended image sequences. In Bernard Buxton and Roberto Cippola, editors, ECCV-96. Springer-Verlag, 1996.

    Google Scholar 

  3. D. Bondyfalat, B. Mourrain, and V.Y. Pan. Controlled iterative methods for solving polynomials systems. ISSAC’98. ACM Press, 1998.

    Google Scholar 

  4. J. Buriánek. Korespondence pro virtualní kameru. Master’s thesis, Czech Technical University, FEL ČVUT, Karlovo náměstí 13, Praha, Czech Republic, 1998. In Czech.

    Google Scholar 

  5. O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, 1993.

    Google Scholar 

  6. O. Faugeras and T. Papadopoulo. Grassmann-Cayley algebra for modeling systems of cameras and the algebraic equations of the manifold of trifocal tensors. Technical Report 3225, INRIA, Jully 1997.

    Google Scholar 

  7. O. Faugeras and B. Mourrain. The geometry and algebra of the point and line correspondences between n images. Technical Report RR-2665, INRIA-Sophia Antipolis, Octobre 1995.

    Google Scholar 

  8. Fitzgibbon, A.W. and Cross, G. and Zisserman, A. Automatic 3D Model Construction for Turn-Table Sequences. SMILE98, Freiburg, Germany, Springer-Verlag LNCS 1506, June 1998.

    Google Scholar 

  9. R. I. Hartley. Computation of the quadrifocal tensor. In ECCV-98, volume I, pages 20–35. Springer Verlag, 1998.

    Article  Google Scholar 

  10. R. I. Hartley. Projective reconstruction from line correspondences. Technical report, GE-Corporate Research and Development, P.O. Box 8, Schenectady, NY, 12301., 1995.

    Google Scholar 

  11. R.I. Hartley. Lines and points in three views and the trifocal tensor. International Journal of Computer Vision, 22(2):125–140, March 1997.

    Google Scholar 

  12. A. Heyden. A common framework for multiple view tensors. In ECCV-98, volume I, pages 3–19. Springer Verlag, 1998.

    Article  Google Scholar 

  13. A. Heyden. Reduced multilinear constraints-theory and experiments. International Journal of Computer Vision, 30:5–26, 1998.

    Article  Google Scholar 

  14. R.H. Lewis and P.F. Stiller. Solving the recognition problem for six lines using the Dixon resultant. Preprint submitted to Elsevier Preprint, 1999.

    Google Scholar 

  15. M. Pollefeys, R. Koch, and L. VanGool. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In ICCV98, page Session 1.4, 1998.

    Google Scholar 

  16. L. Quan. Invariants of 6 points and projective reconstruction from 3 uncalibrated images. PAMI, 17(1):34–46, January 1995.

    Google Scholar 

  17. A. Shashua. Trilinear tensor: The fundamental construct of multiple-view geometry and its applications. In International Workshop on Algebraic Frames For The Perception Action Cycle (AFPAC97), Kiel Germany, September 1997.

    Google Scholar 

  18. A. Shashua and S. Avidan. The rank 4 constraint in multiple (⩾3) view geometry. In Bernard Buxton and Roberto Cipolla, editors, ECCV-96, pages 196–206. Springer Verlag, April 1996.

    Google Scholar 

  19. A. Shashua and M. Werman. Fundamental tensor: On the geometry of three perspective views. Technical report, Hebrew University of Jerusalem, Institut of Computer Science, 91904 Jerusalem, Israel, 1995.

    Google Scholar 

  20. P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In ECCV-96. Springer-Verlag, 1996.

    Google Scholar 

  21. B. Triggs. Linear projective reconstruction from matching tensors. Technical report, Edinburgh, 1996. British Machine Vision Conference.

    Google Scholar 

  22. B. Triggs. The geometry of projective reconstruction I: Matching constraints and the joint image. Technical report, 1995. unpublished report.

    Google Scholar 

  23. M. Urban, T. Pajdla, and V. Hlaváč. Projective reconstruction from multiple views. Technical Report CTU-CMP-1999-5, CMP, FEL CVUT, Karlovo náměstý 13, Praha, Czech Republic, December 1999.

    Google Scholar 

  24. T. Werner, T. Pajdla, and M. Urban. Rec3d: Toolbox for 3d reconstruction from uncalibrated 2d views. Technical Report CTU-CMP-1999-4, Czech Technical University, FEL CVUT, Karlovo náměstí 13, Praha, Czech Republic, December 1999.

    Google Scholar 

  25. Zhengyou Zhang. Determining the epipolar geometry and its uncertainty: A review. IJCV, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, M., Pajdla, T., Hlaváč, V. (2000). Projective Reconstruction from N Views Having One View in Common. In: Triggs, B., Zisserman, A., Szeliski, R. (eds) Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science, vol 1883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44480-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44480-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67973-8

  • Online ISBN: 978-3-540-44480-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics