Skip to main content

Efficient Asynchronous Secure Multiparty Distributed Computation

  • Conference paper
  • First Online:
Progress in Cryptology —INDOCRYPT 2000 (INDOCRYPT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1977))

Included in the following conference series:

Abstract

This paper significantly improves the message complexity of perfect asynchronous secure computations among n players tolerating a computationally unbounded active adversary that corrupts up to t < n/4 players. The protocol presented in this paper communicates O(mn 3 lg ∣IF∣ + mn3 lg n) bits and broadcasts O(mn 2) bits, where m is the number of multiplication gates in the circuit. This is to be compared with the most efficient perfect secure asynchronous protocol known so far, namely the protocol of [5], which requires O(mn 4 lg ∣IF∣ + mn 4 lg n) bits of communication apart from O(mn 4 lg n) bits of broadcast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In Proceedings of 8th ACM PODC, pages 201–210, August 1989. 118

    Google Scholar 

  2. Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority. Journal of Cryptology, pages 75–122, 1991. 117

    Google Scholar 

  3. Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security with low communication overhead (extended abstract). In CRYPTO’ 90, pages 62–76, 1990. 118

    Google Scholar 

  4. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols(extended abstract). In Proceedings of 22nd ACM STOC, pages 503–513, 1990. 118

    Google Scholar 

  5. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computations. In Proceedings of 25th ACM STOC, pages 52–61, 1993. 117, 117, 118, 118, 118, 118, 118, 120, 121, 121, 121, 122, 122, 126, 126, 129

    Google Scholar 

  6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed computation. In Proceedings of 20th ACM STOC, pages 1–10, 1988. 117, 120

    Google Scholar 

  7. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computation with optimal resilience. In Proceedings of 13th ACM PODC, pages 183–192, 1994. 117, 118, 118, 120, 121, 121

    Google Scholar 

  8. G. Bracha. An asynchronous ⌊(n-1)/3⌋-resilient consensus protocol. In Proceedings of 3rd ACM PODC, pages 154–162, 1984. 119

    Google Scholar 

  9. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, The Weizmann Institute of Science, June 1995. 118

    Google Scholar 

  10. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure computation. In Proceedings of 28th ACM STOC, 1996. 117

    Google Scholar 

  11. D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. In Proceedings of 20th ACM STOC, pages 11–19, 1988. 117

    Google Scholar 

  12. R. Cramer, I. Damgard, and U. Maurer. Efficient general secure multiparty computation from any linear secret sharing scheme. In EUROCRYPT2000. Springer-Verlag, 2000. 121, 122

    Google Scholar 

  13. Ronald Cramer, Ivan Damgard, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient multiparty computations secure against an adaptive adversary. In EUROCRYPT’ 99. Springer-Verlag, 1999. 117

    Google Scholar 

  14. Matthew K. Franklin and Moti Yung. Communication complexity of secure computation. In Proceedings of 24th ACM STOC, pages 699–710, 1992. 118

    Google Scholar 

  15. Rosario Gennaro, Micheal O. Rabin, and Tal Rabin. Simplified VSS and fasttrack multiparty computations with applications to threshold cryptography. In Proceedings of 17th ACM PODC, 1998. 118, 123, 124

    Google Scholar 

  16. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In 19th ACM STOC, pages 218–229. ACM Press, 1987. 117

    Google Scholar 

  17. Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient multi-party computation. In ASIACRYPT 2000. Springer-Verlag, December 2000. 118, 118, 119, 120

    Google Scholar 

  18. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In Proceedings of 21st ACM STOC, pages 73–85, 1989. 117

    Google Scholar 

  19. A. Shamir. How to share a secret. CACM, 22:612–613, 1979. 120

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srinathan, K., Pandu Rangan, C. (2000). Efficient Asynchronous Secure Multiparty Distributed Computation. In: Roy, B., Okamoto, E. (eds) Progress in Cryptology —INDOCRYPT 2000. INDOCRYPT 2000. Lecture Notes in Computer Science, vol 1977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44495-5_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44495-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41452-0

  • Online ISBN: 978-3-540-44495-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics