Skip to main content

Fail-Stop Signature for Long Messages (Extended Abstract)

  • Conference paper
  • First Online:
Progress in Cryptology —INDOCRYPT 2000 (INDOCRYPT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1977))

Included in the following conference series:

Abstract

Security of ordinary digital signature schemes relies on a computational assumption. Fail-stop signature (FSS) schemes provide security for a signer against a forger with unlimited computational power by enabling the signer to provide a proof of forgery, if it occurs. Signing long messages using FSS requires a hash function with provable security which results in a slow signature generation process. In this paper, we propose a new construction for FSS schemes based on linear authentication codes which does not require a hash function and results in a much faster signing process at the cost of slower verification process, and longer secret key and signature. An important advantage of the scheme is that proof of forgery is the same as a traditional FSS and does not rely on the properties of the hash functions.

This work is in part supported by Australian Research Council Grant Number A49703076

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Barić and B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. Advances in Cryptology-Eurocrypt’ 97, Lecture Notes in Computer Science 1233, pages 480–494, 1997. 168

    Google Scholar 

  2. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the signer. Interner Bericht, Fakultät für Informatik, 1/91, 1990. 166, 167, 168, 175, 175

    Google Scholar 

  3. I. B. Damgåard, Collision free hash functions and public key signature scheme, Lecture Notes in Computer Science 304, pages 203–216, 1988. 166, 167, 175, 175, 175

    Google Scholar 

  4. E. N. Gilbert, F. J. MacWilliams and N. J. A. Sloane. Codes which detect deception. The Bell System Technical Journal, Vol.33, No.3, pages 405–424, 1974. 170

    MathSciNet  Google Scholar 

  5. T. Johansson. Contributions to unconditionally secure authentication, Ph.D. thesis, Lund, 1994. 172

    Google Scholar 

  6. T. Johansson. Authentication codes for nontrusting parties obtained from rank metric codes, Designs, Codes and Cryptography, 6:205–218, 1995. 172

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Lamport. Constructing digital signatures from a one-way function. PSRI International CSL-98, 1979. 167

    Google Scholar 

  8. A. K. Lenstra, E. R. Verheul, Selecting Cryptographic Key Sizes, online: http://www.cryptosavvy.com/. Extended abstract appeared in Commercial Applications, Price Waterhouse Coopers, CCE Quarterly Journals, 3, pages 3–9, 1999. 167, 175, 175

    Google Scholar 

  9. T. P. Pedersen and B. Pfitzmann. Fail-stop signatures. SIAM Journal on Computing, 26/2:291–330, 1997. 165, 166, 166, 167, 167, 168, 169

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Pfitzmann. Fail-stop signatures: Principles and applications. Proc. Compsec’ 91, 8th world conference on computer security, audit and control, pages 125–134, 1991. 167

    Google Scholar 

  11. B. Pfitzmann. Digital Signature Schemes-General Framework and Fail-Stop Signatures. Lecture Notes in Computer Science 1100, Springer-Verlag, 1996. 167, 168, 173

    MATH  Google Scholar 

  12. R. Safavi-Naini, S. Bakhtiari and C. Charnes. MRD Hashing. Proceedings of Fast Software Encrytion Workshop, Lecture Notes in Computer Science 1372, pages 134–149, 1998. 172

    Google Scholar 

  13. R. Safavi-Naini and W. Susilo. A General Construction for Fail-Stop Signature using Authentication Codes. Workshop on Cryptography and Combinatorial Number Theory (CCNT’ 99), 2000 (to appear). 166, 167, 167, 170

    Google Scholar 

  14. R. Safavi-Naini and W. Susilo. Fail-Stop Threshold Signature Schemes based on Discrete Logarithm and Factorization. The Third International Workshop on Information Security, ISW 2000, 2000 (to appear). 166, 166

    Google Scholar 

  15. G. J. Simmons. Authentication theory/coding theory. Advances in Cryptology-Crypto’ 84, Lecture Notes in Computer Science 196, pages 411–431, 1984.

    Google Scholar 

  16. W. Susilo, R. Safavi-Naini, and J. Pieprzyk. RSA-based Fail-Stop Signature schemes. International Workshop on Security (IWSec’ 99), IEEE Computer Society Press, pages 161–166, 1999. 166, 167, 173, 174, 174, 175

    Google Scholar 

  17. W. Susilo, R. Safavi-Naini, M. Gysin, and J. Seberry. An Efficient Fail-Stop Signature Schemes. The Computer Journal, 2000 (to appear). 166, 166, 166, 167, 173, 174, 174, 175

    Google Scholar 

  18. E. van Heijst and T. Pedersen. How to make efficient fail-stop signatures. Advances in Cryptology-Eurocrypt’ 92, pages 337–346, 1992. 166, 166, 167, 168, 173, 174, 175, 175

    Google Scholar 

  19. E. van Heijst, T. Pedersen, and B. Pfitzmann. New constructions of fail-stop signatures and lower bounds. Advances in Cryptology-Crypto’ 92, Lecture Notes in Computer Science 740, pages 15–30, 1993. 166, 168, 173, 173, 174, 175

    Google Scholar 

  20. M. Waidner and B. Pfitzmann. The dining cryptographers in the disco: Unconditional sender and recipient untraceability with computationally secure serviceability. Advances in Cryptology-Eurocrypt’ 89, Lecture Notes in Computer Science 434, 1990. 165, 167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safavi-Naini, R., Susilo, W., Wang, H. (2000). Fail-Stop Signature for Long Messages (Extended Abstract). In: Roy, B., Okamoto, E. (eds) Progress in Cryptology —INDOCRYPT 2000. INDOCRYPT 2000. Lecture Notes in Computer Science, vol 1977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44495-5_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44495-5_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41452-0

  • Online ISBN: 978-3-540-44495-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics