Abstract
In cryptographic applications, the use of normal bases to represent elements of the finite field GF(2m) is quite advantageous, especially for hardware implementation. In this article, we consider an important field operation, namely, multiplication which is used in many cryptographic functions. We present a class of algorithms for normal basis multiplication in GF(2m). Our proposed multiplication algorithm for composite finite fields requires significantly lower number of bit level operations and hence can reduce the space complexity of cryptographic systems when implemented in hardware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields,” IEEE Transactions on Computers, vol. 42, no. 10, pp. 1278–1280, Oct. 1993. 213, 213, 215, 219, 219
C. K. Koc and B. Sunar, “Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,” IEEE Transactions on Computers, vol. 47, no. 3, pp. 353–356, March 1998. 219, 219
Chung-Chin Lu, “A Search of Minimal Key Functions for Normal Basis Multipliers,” IEEE Transactions on Computers, vol. 46, no. 5, pp. 588–592, May 1997. 213, 222
S. D. Galbraith and N. P. Smart, “A Cryptographic Application of Weil Descent,” in Proceedings of Cryptography and Coding, LNCS 1764, pp. 191–200, Springer-Verlag, 1999. 220
J. L. Massey and J. K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627, 1986. 213
A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of Finite Fields, Kluwer Academic Publishers, 1993. 218
R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, “Optimal normal bases in GF(p n),” Discrete Applied Mathematics, vol. 22, pp. 149–161, 1988/1989. 213, 213, 215, 218, 222
A. Reyhani-Masoleh and M. A. Hasan, “A Reduced Redundancy Massey-Omura Parallel Multiplier over GF(2 m),” in Proceedings of the 20 th Biennial Symposium on Communications, pp. 308–312, Kingston, Ontario, Canada, May 2000. 213, 213, 217, 217, 217, 217, 217, 219, 219, 223, 223
J. E. Seguin, “Low complexity normal bases,” Discrete Applied Mathematics, vol. 28, pp. 309–312, 1990. 220
P. K. S. Wah and M. Z. Wang, “Realization and application of the Massey-Omura lock,” presented at the IEEE Int. Zurich Seminar on Digital Communications, pp. 175–182, 1984. 213, 213, 218
C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura and I. S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in GF(2 m),” IEEE Transactions on Computers, vol. 34, no. 8, pp. 709–716, Aug. 1985. 213, 217, 217, 217, 219, 219, 223, 223
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reyhani-Masoleh, A., Hasan, M. (2000). On Efficient Normal Basis Multiplication. In: Roy, B., Okamoto, E. (eds) Progress in Cryptology —INDOCRYPT 2000. INDOCRYPT 2000. Lecture Notes in Computer Science, vol 1977. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44495-5_19
Download citation
DOI: https://doi.org/10.1007/3-540-44495-5_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41452-0
Online ISBN: 978-3-540-44495-4
eBook Packages: Springer Book Archive