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Abstract. Because of their shorter key sizes, cryptosystems based on
elliptic curves are being increasingly used in practical applications. A
special class of elliptic curves, namely, Koblitz curves, offers an addi-
tional but crucial advantage of considerably reduced processing time. In
this article, power analysis attacks are applied to cryptosystems that
use scalar multiplication on Koblitz curves. Both the simple and the
differential power analysis attacks are considered and a number of coun-
termeasures are suggested. While the proposed countermeasures against
the simple power analysis attacks rely on making the power consumption
for the elliptic curve scalar multiplication independent of the secret key,
those for the differential power analysis attacks depend on randomizing
the secret key prior to each execution of the scalar multiplication.

1 Introduction

If cryptographic systems are not designed properly, they may leak information
that is often correlated to the secret key. Attackers who can access this leaked
information are able to recover the secret key and break the cryptosystem with
reasonable efforts and resources. In the recent past, attacks have been proposed
that use the leaked side channel information such as timing measurement, power
consumption and faulty hardware (see for example [H, &, [&], &, [, [F]). These
attacks are more related to the implementation aspects of cryptosystems and
are different from the ones that are based on statistical properties of the cryp-
tographic algorithms (i.e., differential and linear cryptanalysis attacks [, [H],
).
In M and [M], Kocher et al. have presented attacks based on simple and
differential power analysis (referred to as SPA and DPA respectively) to recover
the secret key by monitoring and analyzing the power consumption signals. Such
power signals can provide useful side channel information to the attackers. In
[, Kelsey shows how little side channel information is needed by an attacker
to break a cryptosystem. In [H], Messerges et al. show how the side channel
information can be maximized. In order to implement a good cryptosystem, the
designer needs to be aware of such threats.
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In [&1], a number of power analysis attacks against smartcard implementa-
tions of modular exponentiation algorithms have been described. In [, power
analysis attacks have been extended to elliptic curve (EC) cryptosystems, where
both the SPA and the DPA attacks have been considered and a number of coun-
termeasures including private key randomization and EC point blinding have
been proposed. Generic methods to counteract power analysis attacks have been
reported in [E].

Cryptosystems based on a special class of ECs, referred to as anomalous bi-
nary or Koblitz curves, were proposed by Koblitz in [E]. Such cryptosystems
offer significant advantage in terms of reduced processing time. The latter, along
with shorter key sizes, has made Koblitz curve (KC) based cryptosystems at-
tractive for practical applications. However, the countermeasures available for
random EC based cryptosystems do not appear to be the best solution to KC
based cryptosystems.

In this article power analysis attacks are investigated in the context of KC
based cryptosystems. The SPA attack is considered and its countermeasures at
the algorithmic level are given. The proposed countermeasures rely on making
the power consumption for the elliptic curve scalar multiplication independent of
the secret key. Cryptosystems equipped with such countermeasures are however
not secure enough against a stronger attack based on the DPA. In this article
we also consider the DPA attack and describe how an attacker can maximize the
differential signal used for the power correlation. To prevent DPA attacks against
KC cryptosystems, we suggest a number of countermeasures which are the main
results of this article. These countermeasures depend on randomizing the secret
key prior to each execution of the scalar multiplication. They are suitable for
hardware implementation, and compared to the countermeasures available in the
open literature, their implementation appears to be less complex.

2 Preliminaries

An elliptic curve (EC) is the set of points satisfying a bivariate cubic equa-
tion over a field. For the finite field GF(2") of characteristic two, the standard
equation for an EC is the Weierstrass equation

v oy =23 +ax® +b (1)

where a,b € GF(2") and b # 0. The points on the curve are of the form
P = (z,y), where x and y are elements of GF(2"). Let E be the elliptic curve
consisting of the solutions (z,y) to equation (M), along with a special point O
called the point at infinity. It is well known that the set of points on E forms
a commutative finite group under the following addition operation. (More on it
can be found in [E], [E], =1, =], and [E9).)

Elliptic Curve Addition: Let P = (z,y) # O be a point on E. The inverse
of P is defined as —P = (x,z + y). The point O is the group identity, i.e.,
PWO =0OWP = P, were & denotes the elliptic curve group operation (i.e.,
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addition). If Py = (zo,y0) # O and Py = (z1,y1) # O are two points on E and

Py # —Py, then the result of the addition Py W Py = Po = (z2,%2) is given as
follows.

2
(yo+yl) 4 Yo+y1 +xo + 21 + a, Po#Ph

To = To+x1 To+x1 (2)
x(%+mbga P():Pl,
() eosa) e P B o
0 =
$3+(Io+zg)x2+x2, Py = P.

The above formulas for the addition rule require a number of arithmetic op-
erations, namely, addition, squaring, multiplication and inversion over GF(2").
(See, e.g., [A| and [, for efficient algorithms for finite field arithmetic.) The
computational complexities of addition and squaring are much lower than those
of multiplication and inversion. To simplify the complexity comparison, our
forthcoming discussion in this article ignores the costs of addition and squar-
ing operations. Also, note that the formulas in (@) and (@) for point doubling
(i.e., Pp = P;) and adding (i.e., Py # Pp) are different. The doubling requires one
inversion, two general multiplications and one constant multiplication, whereas
the adding operation costs one inversion and two general multiplications. Since,
a field inverse is several times slower than a constant multiplication, we assume
that the costs of elliptic curve point doubling and adding are roughly equal. If
the points on E are represented using projective coordinates, one can however
expect to see a considerable difference in these two costs and needs to treat them
accordingly.

Elliptic Curve Scalar Multiplication: Elliptic curve scalar multiplication
is the fundamental operation in cryptographic systems based on ECs. If k is a
positive integer and P is a point on E, then the scalar multiplication kP is the
result of adding k copies of P, i.e.,
kP=PWPW.---WP,
- ~ o’
k copies
and —kP = k(—P). Let (kj—1, ki—2, -+, k1, ko), be aradix r representation of

k, where k;_; is the most significant symbol (digit) and each k;, for 0 <7 < 1—1,
belongs to the symbol set s used for representing k. Thus

-1
kP = <Z kr) P=(k_1r'""'P)w-- W (kyrP) W (koP)
1=0
=r(r(rrkiaP)WkoP)Y- ) k1 P)WkoP.

Then one may use the following multiply-radiz-and-add algorithm (also known
as double-and-add algorithm for r = 2) to compute kP in [ iterations.
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Algorithm 1. Scalar multiplication by multiply radix and add
Input: k£ and P
Output: @ = kP

Q=0
for (j=1-1;>0;7—--){
Q:=rQ
if (k; = 1)
Q=QuP

Remark 1. For practical purposes one can assume that k is represented with re-
spect to the conventional binary number system (i.e., r =2 and k; € {0, 1}) and
that | = n where n is the dimension of the underlying extension field. Then the
above algorithm would require approzimately 3n/2 elliptic operations on average.

Note that the conventional binary system is non-redundant and k£ has only
one representation. However, using a different number system which has redun-
dancy in it, the integer k can be represented in more than one way. By choosing
a representation of k that has fewer non-zeros, one can reduce the number of
EC additions and hence speed-up the scalar multiplication. More on this can be
found in [ and the references therein.

Remark 2. If k is represented in the binary NAF (non-adjacent form [Z4]), where
r=2,k;j € {-1,0,1} and kjk;11 =0, 0 < j < n, then the average number of
elliptic operations in Algorithm 1 is =~ 4n/3.

Koblitz Curves: In (ll), if we set b = 1 and restrict a to be in {0,1}, we have
v+ ay =23 4+ ax® +1, (4)

which gives a special class of ECs, referred to as Koblitz curves (KC). Let us
denote the KC as E,. (In the rest of this article, if a curve E as defined in
conjunction with (fll) is not of Koblitz type, then it is referred to as a random
curve. )

In (@), since a € GF(2), if (z,y) is a point on E,, (z2,y?) is also a point
on F,. Using the addition rule given in the previous section, one can also verify
that if (z,y) € E,, then the three points, viz., (z,y), (z2,%?) and (24, y*) satisfy
the following:

(2%, 5% & 2z, ) = (—1)' (a2, ?). (5)

Using (H), one can then obtain

T(z,y) = (2°,9%), (6)
where, 7 is a complex number which satisfies

72— (~1)170r 42 =0, (™)
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Equation () is referred to as the Frobenius map over GF(2). One important
implication of () is that the multiplication of a point on FE, by the complex
number 7 can simply be realized with the squaring of the  and y coordinates of
the point. As a result, if the scalar k is represented with radix 7 and k; € {0,1},
the above multiply-radix-and-add algorithm still can be used with r = 7. The
operation @) := r@ would however then correspond to two squaring operations
over GF(2"). In a normal basis representation, squaring is as simple as a cyclic
shift of the bits of the operand. Efficient squaring algorithms using the more
widely used polynomial basis can be found in [Z] and [E0].

3 SPA Attack and Its Countermeasures

The elliptic curve scalar multiplication @) = kP, where both P and @) are points
on the curve and k is an integer, is the fundamental computation performed in
cryptosystems based on elliptic curves. In the elliptic curve version of the Diffie-
Hellman key exchange, the scalar k is the private key which is an binary integer
of about n bits long. The security of many public-key cryptosystems depends
on the secrecy of the private key. In many applications, the key is stored inside
the device. In the recent past, attacks have been reported in the open litera-
ture to recover the key by analyzing the power consumption of cryptosystems.
Following [i£4], here we first briefly describe the simple power analysis (SPA)
attack and a countermeasure against it (denoted as simple countermeasure). Al-
though the countermeasure, which is a close-variant of its counterpart in modular
exponentiation, is easy to implement, below we show that its straight-forward
implementation gives away the computational advantage one would expect from
the use of Koblitz curves. We then discuss two simple modifications for possible
improvements.

3.1 SPA Attack

In general, power analysis attacks rely on the difference between power con-
sumptions of the cryptosystem when the value of a specific partitioning function
is above and below a suitable threshold. For example, when a cryptosystem is
performing a simple operation (such as the Frobenius map), the power consump-
tion may be related to the Hamming weight of the operand. Large differences in
power consumptions may be identified visually or by simple analysis.

If the scalar multiplication is performed using the multiply-radiz-and-add
algorithm, a simple power analysis can be applied. In Algorithmll, the operation
Q :=rQ is performed in each iteration irrespective of the value of k;. However,
the step with Q) := QW P is processed if k; = 1, which requires a number of time
and power consuming operations, such as, GF(2") multiplication and inversion
as shown in (H) and @). This enables an attacker to easily analyze the power
consumption signals, especially to detect the difference in power consumption
(and time) and to eventually recover k;. An attacker may need as low as one
iteration of the multiply-radix-and-add algorithm to obtain k;.
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3.2 Coron’s Simple Countermeasure

A straightforward countermeasure for the SPA attack is to make the execution
of the elliptic curve addition independent of the value of k;. This can be achieved
by performing the elliptic addition in each iteration irrespective of the value of k;
and use the sum in the subsequent steps as needed. This is shown in the following
algorithm. The latter, along with r replaced by 2, yields the SPA resistant scalar
multiplication for random curves proposed by Coron [=].

Algorithm 2. SPA resistant scalar multiplication
Input: k and P
Output: Q@ = kP

for (j =1—1;5>=0;5 — —){

Q[0] := rQI0]
QM]:=Q[0]w P
Q[0] := Q[k;]
}
Q:=Q[0]
Assuming that the difference in power consumption to access Q[0] and Q[1]
is negligible, the power consumption for executing Q[0] := Q[k;] (and hence the

above algorithm) does not depend of the value of k;. As a result, the simple
power analysis attack would not be effective to recover k.

As mentioned earlier, for the binary representation of k, the latter can be n
bits long implying that the above algorithm would require 2n elliptic operations
(doubling and adding). On the other hand, to take advantage of the simple
Frobenius mapping associated with the Koblitz curve, k is usually represented
with radix r = 7. For such 7-adic representation, if we limit k;, for 0 <j <[1-1
to be 0 and 1 only, then the value of [ in Algorithm Bcan be = 2n [EZ4]. Thus, the
algorithm would require about 2n elliptic operations (only addition, no doubling)
and does not appear to provide computational advantages of using Koblitz curves
over random curves. The following discussion however attempts to alleviate this
problem.

3.3 Reduced Complexity Countermeasure

Since the solutions (z,y) to equation () are over GF(2"), we have %"

Consequently,

= T.

(7" =z, y) = O. (8)

Thus, for the scalar multiplication Q = kP, instead of using k, one can use
k (mod 7™ — 1) and an n-tuple can be used to represent k (mod 7™ — 1) in radix
7. Let k = (Kp—1,Kn—2, -+, ko)r denote the 7-adic representation of k (mod
7" — 1), where x; € s. The latter corresponds to the set of symbols used for
representing the reduced k. Efficient algorithms exist to reduce £ modulo 7™ — 1
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(see for example [24], [Z]). As it will be shown later, in certain situations, it
appears to be advantageous to use an expanded symbol set which results in a
redundant number system. Assume that s = {sq, 51, -, 5|s—1} With 5o < 51 <
++ < 8|5)—1- For the sake of simplicity, if we also assume that s is symmetric
around zero (e.g., s = {—1, 0, 1}), the following algorithm for @ = kP is SPA
resistant.

Algorithm 2a. SPA resistant scalar multiplication with reduced 7 representa-
tion
Input: £ and P
Output: @ = kP
for (j =n—1;7>=0;j— —){

Q[0] := 7Q[0]
Q] :=Q0]wP; Q[-1]:=-Q[1]

Q2] :=Q]wP; Q-2]:=-0Q[2

Qllls|—1)/21:= Qlls| - 3)/216P; - QI—(1s|—1)/2] == —Q[(|s] ~1)/2]

/* |s| is odd for symmetric s */

} Q[0] := Q[r;]
Q = Q0]

The cost of calculating the additive inverse of an elliptic point is simply equal
to the addition of two elements of GF(2") and it is quite small compared to an
elliptic addition. As a result, the computational cost of the above algorithm is
essentially n(|s| — 1)/2 elliptic operations (additions only). In terms of storage
requirements, the above algorithm uses buffers to hold |s| elliptic points. These
buffers are accessed in each iteration. For high speed cryptosystems, these points
can be buffered in the registers of the underlying processor. For practical appli-
cations, the number of registers needed for this purpose may be too high for
many of today’s processors. For example, if a Koblitz curve over GF(21%3), rec-
ommended by various standardization committees, is used, then twelve 32-bit
registers are needed to hold a single elliptic point (both x and y coordinates in
uncompressed form). Assuming that there are only three symbols in the set s,
the total number of 32-bit registers needed is thirty six.

Remark 3. If k is reduced mod ™ — 1 and represented in the signed binary 7-
adic form [EA], where r = 7 and s = {—1,0,1} and then the number of elliptic
operations (i.e., additions) in Algorithm E& is n.

3.4 Countermeasure with Large Sized Symbol Set

With the increase of |s|, the cost of this algorithm increases linearly and the
advantage of using the Frobenius map, rather than the point doubling, dimin-
ishes. What follows below is a way to reduce the cost of scalar multiplication for
Koblitz curves using a few pre-computed elliptic curve points.
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From (B, one can write
(=D T 4 () =0

implying that
(T 1) () = O, ®)

Thus, in the context of the scalar multiplication one has

n—1

k (mod 7" —1) = Z(/{Z — 59+ 1)7°
i=0

where sg is the smallest integer in s. Notice that x; — sp + 1 ensures that each
symbol of the reduced k representation is a non-zero positive integer. Now, we
have an efficient way to compute scalar multiplication as follows.

Algorithm 2b. Efficient SPA resistant scalar multiplication with reduced 7
representation
Input: k and P
Output: @ = kP

Pl0]=0

for (i =050 <|s| — ;i ++){

Pli+1]:=Pli]yP
}

Q=0
for (j =n—1;j >=0;j — —){
Q:=1QWYP[rj — so+1]

This algorithm requires a maximum of n + |s| elliptic operations (in contrast
to n(]s| —1)/2 elliptic operations in Algorithm [B&l). More importantly, the num-
ber of registers needed in the loop of the above algorithm does not increase with
the increase of the symbol set size. This may be advantageous for register con-
strained processors. The pre-computed points, namely, P[i], for 0 <i < |s| — 1,
can be stored in a RAM. The latter is updated at the beginning of the algorithm
and is accessed only once in each iteration.

If the activities on the address bus of the RAM can be monitored, it can
be used by the attacker to reduce his efforts to recover x;. One way to prevent
this kind of information leakage is to load the pre-computed points into random
locations inside the RAM.

4 DPA Attack

SPA attacks would fail when the differences in the power signals are so small
that it is infeasible to directly observe them and to apply simple power analysis.
In such cases, an attacker can apply differential power analysis (DPA). The
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DPA attacks are based on the same underlying principle of SPA attacks, but use
statistical and digital signal processing techniques on a large number of power
consumption signals to reduce noise and to strengthen the differential signal.
The latter corresponds to the peak, if any, in the power correlation process. This
signal is an indication whether or not the attacker’s guess about a symbol of the
n-tuple representation of the secret key is correct.

Kocher et al. first introduced the idea of DPA to attack DES [H], [&]. This DPA
attack was strengthened by Messerges et al. in [H]. Coron applied the DPA attack
against EC cryptosystems [i]. In this section, this attack is briefly described
and possible strategies that the attacker can use to strengthen the differential
signal are presented.

4.1 DPA Attack on EC Scalar Multiplication

Assume that a cryptosystem uses one of the scalar multiplication algorithms
described in the previous section. Although, Algorithms B, 23 and EBY are all
SPA resistant, and iterations of each of these algorithms have equal amount of
computational load irrespective of k; or x;, the latter remains the same in all
runs of the algorithm. One can take advantage of this to recover the scalar in
the DPA attack as follows.

In order to apply the DPA attack, the algorithm is executed repeatedly (say,
t times) with points Py, Py, .-+, P,—1 as inputs. During the execution of the
algorithm, the power consumption is monitored for each iteration in which two
elliptic curve points are added. In its ¢-th execution of the algorithm, let the
power consumption signal of the j-th iteration be S;;, 0 < ¢ < ¢t —1 and
0 < j < n—1. Assume that the most significant n — j° — 1 symbols, namely,
Kn—1, Kn—2," -, Kj4+1 are known. In order to determine the next most significant
symbol k;/, the attacker proceeds as follows.

In an attempt to analyze the power signals, a partitioning function is chosen
by the attacker. This function, in its simplest form, is the same for all j and is of
two value logic. The function’s value depends on k, more specifically, for j = 5/,
it depends on Kp—1, kn—2, -+, K;. The true value, which is still unknown to the
attacker, is generated within the devise which executes the scalar multiplication
algorithm. Let us denote this value as ; j» € {0,1},0 < ¢ < ¢t—1. For the DPA to
work for the attacker, there ought to be a difference in the power consumptions
based on the two values. By guessing a value (say n;./) for k;s, the attacker

1. comes up with his own value ’Y;,j/a 0 < i < t—1, for the partitioning function,

2. splits the power signals S; j, for 0 < ¢ < ¢t — 1, into two sets: Sy =
{Sijr1vi =0} and Sy = {S; y[7; ;, = 1}, and finally

3. computes the following differential signal

s Zs 5 s Zs S’

N i,j’G 0 iyj/G 1

6(] ) - t—1 - t—1 . (]‘O)
Z:O'Yz{,j/ > (11— 'Yz{,j/)

=0
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Notice that

Lif kL, # Ky
L =) A 27 ! J’ J
Pr(’y'h]/ Visj ) { 1’ if H;/ = Kj (11)
and for a sufficiently large value of ¢,
0,if K, # Ky
. AW 3 j j
tlggod(] ) {e, if K% =k (12)

where € is related to the difference of the average power consumptions with ; ;/
being 0 and 1. This non-zero value of the differential signal indicates a correct
guess for r;.. For the symbol set s, to obtain a non-zero differential signal the
attacker needs to perform the differential power analysis |s|/2 times, on average.

5 Countermeasures against DPA Attacks

In this section we describe three countermeasures to prevent the DPA that an
attacker can use in an effort to learn the (secret) scalar k of the Koblitz curve
scalar multiplication ) = kP. The underlying principle is that if £ is randomly
changed each time it is used in the cryptosystem, the averaging out technique
used in the DPA would not converge to an identifiable differential signal and the
DPA attacks are expected to fail. The main challenge however is to change k to
pseudo-random values with a reasonable cost and still providing the same Q.

The countermeasures presented below can be applied separately. However,
when they are used together, one can expect to attain highest level of protection
against power analysis attacks.

5.1 Key Masking with Localized Operations (KMLO)

For the sake of simplicity, in (ll) assume that a = 1 (an extension using a = 0 is
straight-forward). Then, using (H) one can write

P e g Ly (13)

which shows two different representations of ’2’. This in turn allows the 7-adic
symbols of k£ to be replaced in more than one way on a window of three or more
symbols. For example, using the above two representations of ’2’, the window of
four symbols vis., (Ki+3, Ki+2, Ki+1, &i) can be replaced by (k;4+3 = dit3, Kit2 =
di+1, Ki4+1 + di+1, KRj + dl) where

(diy3, diya, dig1, d;)

= (0, 1, 1, 2
- L0 1 9 )
= (L 1, 2 0

and z = —z. If d;’s are allowed to take values outside the range [-2, 2], more

combinations can be obtained. These combinations can be used to modify the
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symbols of the window such that the resultant symbols belong to an expanded set
s. Also, the windows can be overlapped, their starting positions can be changed
and their sizes can be varied.

To implement this key masking scheme in hardware, one can use an n-stage
shift register where each stage can hold one symbol of s. The key k£ reduced
modulo 7" — 1 is initially loaded into the register. A masking unit will take a w-
tuple vector (w > 3) consisting of any w adjacent symbols from the register and
adds it to another vector derived from (3). (For w = 4, a set of possible vectors
are given in (E8).) The resultant vector then replaces the original w-tuple vector
in the register. This process is repeated by shifting the contents of the register,
possibly to mask all the symbols stored in the register. During this masking
process, if a resultant symbol lies out side the set s, one can repeatedly apply ()
to restrict the symbol within s. Additionally, since (77~ 14+7""2+...4+1)P = 0P,

Q= (2; m—Ti> pP= (2; /%Z-TZ) P (15)

where #; = k; £ ¢, for 0 < ¢ < n —1, and c is an integer. Hence, a bias can be
applied to each symbol of the key without any long addition (and hence without
any carry propagation).

5.2 Random Rotation of Key (RRK)

Let
P =7"P, (16)

where r is a random integer such that 0 <r <n—1. Using (H), the elliptic curve
scalar multiplication can be written as follows:

Q=kP
= (nn,lTnfl Y L R ko) P

=7 " (/{r,lT"*l F Ry 24 4 nr) P

n—1
= (nr,lTnfl F BT 24 4 nr) P = (Z K(r—1—i) mod n Ti> P’
i=0
=7(7(7(7(hr—1 P YW ko P YW )Wk P) Wk, P

This leads to the following algorithm, where the operation ” P[i] := s; P’ 7 can
be replaced by " P'[i] :== (s; — so + 1)P’ 7 if an elliptic addition of O has to be
avoided.

Algorithm 3. Scalar Multiplication with Key Rotation
Input: £ and P
Output: @ = kP
Pick up a random number r € {0, 1, ---, n— 1}
Compute P’ = 7" P
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Q:=0;5=r; Pi]:=5P, 0<i<]|s|—1
for 1 =0;1<n—1;i++) {

j:=7—1 (mod n)

Q:=71Q

Q = QW P'[k; — s

}

Before starting the iterations, Algorithm B computes P’. From (), we have
P=(,y") (17)

where x and y are the coordinates of P. Let the normal basis representations of
x and y be

T = (xnfla Tn—2, ", IO) and

y= (yn—l, Yn—2, ", yo)a

respectively. Then, one can write

I2T = (xnfrfla Tn—r—25 """y L0y Tn—1,""", xnfr) and

y2 = (ynfrfla Yn—r—2, * 5 Yo, Yn—1,""", ynfr)

which correspond to r-fold left cyclic shift of the representations of x and v,

respectively. Thus, using a normal basis representation, one can easily compute

P’ = 7" P with minimal risk of revealing the value of r against power attacks.
On the other hand, if x and y are represented with respect to a polynomial or

other basis where the 7" mapping is accomplished in an iterative way, measures

must be taken so that the number of iterations does not reveal r.

5.3 Random Insertion of Redundant Symbols (RIRS)

The basis of this method for key randomization is that before each scalar mul-
tiplication a number of redundant symbols are inserted at random locations in
the secret key sequence. In order to correctly generate the shared secret, these
redundant symbols however must collectively nullify their own effects.

Before a particular scalar multiplication, assume that a total of n’ redundant
symbols denoted as f;, for 0 < ¢ < n’ — 1, are inserted into the original key
sequence {k;}, for 0 < ¢ < n — 1. Thus the resultant sequence, denoted as
b={b;}, for 0 <i < N —1, has N = n+n’ symbols. When an SPA resistant
algorithm (like the ones in Section H) is applied to do a scalar multiplication, the
redundant symbols are paired, i.e., (fo, f1), (f2, f3), -+, (fnr—2, fnr—1) where n’
is even. For the sake of simple implementation, redundant pairs are picked up
in sequence, (i.e., first (fo, f1), then (fa, f3) and so on) and inserted at random
adjacent locations starting from the most significant symbol of b. For example,
with n’ > 4, if the pair (f2, fai+1), for 0 <1 < n’/2 — 1, is inserted at locations
i and i — 1, then (fo42, forts) is inserted at j and j — 1, for some ¢ and j such
that N —1>4¢>75> 1.
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In order to implement this scheme, an N bit random number g is generated
which has g/ non-adjacent one’s. The locations of these 1’s are aligned with the
redundant symbols fa;11, for 0 <1< n’/2—1, each of which corresponds to the
second element of a pair of redundant symbols as shown below.

Location: N—-1---N—-r+1N—-rN—-—r—1N—-r—2.-.

g: 0 - 0 0 1 0 - (18)
b : Rn—1 **° RKRpn—r41 fO fl Rn—r e

In (), the first pair (fo, f1) has been inserted at random location N —r. Assume

that all b;’s belong an ezpanded symbol set u = {ug, u1, - - -, ujy—1}. To perform

scalar multiplication on the Koblitz curve, we can then state the following algo-
rithm, where b} is an integer in the range [0,|u|-1] and is obtained as b} = 1, for
0 <1 <|u|—1, given that b; = u,.

Algorithm 4. Scalar Multiplication with Random Insertions
Input: k£ and P
Output: @ = kP
Compute P[i]| =u; P, 0<i<|u|l—1
Generate g and form b
Q:=0; R[0]:=0;R[1]:=0
for(l=N-1;i>0;i——){
R[0] :=7R, R[1]:=7"'R
Q = Rlg)) & P[¥)
}

In the above algorithm, let Q) denote the point @Q at iteration i = j. In
order to determine the value of the redundant symbols, without loss of generality
we refer to (B¥). To obtain the correct @ at the end of iteration i = N — r + 2,
the algorithm should yield

Q(N7r72) = anlTril + Hn727—r72 + -+ Rp—r4+1T + Kn—r- (19)
In this regard, note that
Q(Nir) = anlTril + Hn727—r72 R Kn—r4+1T + fO-

Withi=N—-r—1landi= N —r—2 we have gy_,_1 =1 and gny_,_2 = 0,
respectively. In Algorithm B, these two values of g;’s correspond to 7! and 7
mappings, respectively, and yield the following:
QW= = T T 7+ 2T Tt BT + fo) + S,
QW2 = g 7" b Ko T2 e Bopra T+ fo o+ 1T+ B (20)

Comparing (E) and (BH), one can see that if f; is chosen to nullify the effect of
fo, then these two redundant symbols should have the following relationship

fo+71fi=0. (21)
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On the other hand, if the pair (fa, f3) is to cancel (fo, f1), then the following
should satisfy
fo+rfs+7" W fo+7h1) =0 (22)

assuming that fo is m positions away from f;. The value of m can be varied.
However for the sake of simpler implementation it can be fixed to a value which
could be as small as unity.

5.4 Comments

— The three methods presented above use 7-adic representation of the key k.
The first and the third methods can be extended to other bases of presenta-
tion of k.

— Each of the three proposed methods uses a look-up table which hold the
points u; P, for 0 < ¢ < |u| — 1, corresponding to the expanded symbol set
u which contains all the symbols of the randomized key. The table contents
are to be updated each time a new P (or P’ in the random rotation of the
key) is used. If the symbol set is symmetric then the look-up table may
contain only {u;P : u; > 0,0 < ¢ < |u| — 1}. This is possible because the
negative multiples of P can be obtained from the positive multiples using
—(x,y) = (z,z + y) . Although, this technique reduces the table size by half,
it introduces an extra step for the negative digits, which may reveal the signs
of the digits unless proper measures are taken to protect them.

6 Comparison and Concluding Remarks

In the randomization technique of ], a multiple of the total number of curve
points & is added to k. Since EP = O,

Q=kP=(k+e&)P (23)

where e is an integer. The realization of this key randomization scheme requires
a large integer multiplier (€ is about n bits long). If this multiplier is not already
part of the system into which the power analysis resistant elliptic curve scalar
multiplication is to be embedded, it will result in a considerable increase in
the silicon area. On the other hand, the key masking/randomization scheme
presented in Section l does not need such a multiplier.

Recently, Chari et al. have proposed generic methods [ to countermeasure
differential power analysis attacks. For instance, one can randomly pick up a
pair of numbers &’ and k" such that k = k¥’ + k", and computes k’'P W k" P. A
straightforward implementation of this scheme would require longer computa-
tion time since two scalar multiplications are involved. In order to reduce the
computation time, if certain speed-up techniques (e.g., Shamir’s trick) are used,
then one would require relatively more complex implementation.

Although, the method proposed in [ focuses on key randomization in mod-
ular exponentiation, one can attempt to extend it to elliptic curve scalar multi-
plication. It starts the computation of () at a random symbol of k, but always
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terminates the computation at the most significant symbol giving the adversary
an opportunity to work backwards. For such an attack on Koblitz curve based
cryptosystems, the adversary needs to compute the inverse of the 7 mapping,
which unlike the square root operation in modular exponentiation, can be quite
simple. On the other hand, Algorithm Blof this article also starts at random posi-
tion (i.e., symbol), but unlike [ it terminates adjacent to the random starting
position. As a result, it is less vulnerable to the backward power analysis attack.

When applied to Koblitz curve based cryptosystems, the proposed counter-
measures are expected to be less complex than the similar ones already exist.
Nevertheless, their overall impacts on the cryptosystems need to be carefully
investigated and possible trade-offs are to be identified for implementation in
real systems. More importantly, these countermeasures are to be investigated
against more advanced attacks.
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