
Efficient Parallelisation of Recursive Problems

Using Constructive Recursion�

Magne Haveraaen

Institutt for Informatikk, Universitetet i Bergen, HiB, N-5020 Bergen, Norway
http://www.ii.uib.no/∼magne

Abstract. Many problems from science and engineering may be nicely
formulated recursively. As a problem solving technique this is very effi-
cient. Due to the high cost of executing recursively formulated programs,
typically an exponential growth in time complexity, this is rarely done
in practice. Constructive recursion promises to deliver a space and time
optimal compilation of recursive programs. The constructive recursive
scheme also straight forwardly generates parallel code on high perfor-
mance computing architectures.

1 Introduction

Recursive formulation of algorithms has for decades been considered an efficient
problem solving method in computer science. The high run-time costs for most
recursive programs has been hindering its general applicability. The standard
operational interpretation of a recursive program forms a tree of recursive calls
spreading out from the node of the initial invocation, i.e., the root node, and
this is where the result of the computation is gathered. The shape of this tree
is defined by the data dependency pattern of the recursive calls. The tree often
has many nodes with identical subtrees. The efficiency of the computation, and
its parallelisation, crucially depends on identical subtrees being merged into one,
thus forming a compact data dependency graph. Also, the traversal order of this
graph is important: if we trace the data dependency graph from the root, we need
to instantiate all the nodes of the data dependency graph before any computation
takes place. If we instead proceed in a data-driven fashion, starting at the leaves,
we will only instantiate nodes when the computation reaches them. A node may
be deleted as soon as the execution has passed on the value computed at it to
the next node.

Of the three computational models, operational (Turing machines, impera-
tive programs), syntactic (general grammars, term rewriting, λ-calculus and re-
lated functional programming), and semantic (µ-recursion), the semantic model
readily generalises to recursion on data dependency graphs (from its traditional

� This investigation has been carried out with the support of the European Union,
ESPRIT project 21871 SAGA (Scientific Computing and Algebraic Abstractions)
and a grant of computing resources from the Norwegian Supercomputer Committee.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 758–761, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Efficient Parallelisation of Recursive Problems Using Constructive Recursion 759

recursion on natural numbers). This generalisation is called constructive recur-
sion [3, 2]. It includes the definition of the data dependency graph as an explicit
component of a recursive program. A compiler may then use this information to
create data-driven code distributed on the processors of a parallel machine. We
have developed a programming language, Sapphire, embodying these ideas. A
Sapphire program consists of three parts: the definition of the data dependency,
the definition of the recursive function, and the initiation of the computation.

The next section sketches the principles of constructive recursion and asso-
ciated compilation technique. Section 3 presents an example with timings. The
conclusion gives some references to related work.

2 Constructive Recursion

Somewhat simplistically, a recursively defined function f can be abstracted to
the form

fi1,...,im = φ(fδ1(i1,...,im), . . . , fδk(i1,...,im)),

where the tuple (i1, . . . , im) of variables range over some subset D ⊆ N
m , the

index domain, of the m-tuple of natural numbers. The functions δ� : D → N
m

define the dependency pattern or stencil of the recursion1. The recursion is well
defined if the δ� define a well-funded partial order on the m-tuple of natural
numbers Nm , i.e., all paths generated by the δ� are finite, and there is a set of
initial values εi1,...,im for every index-tuple (i1, . . . , im) ∈ (Nm \ D).

To get a constructive recursive definition of f , we also need to know the
opposite of the stencil δ�. The opposite does not mean the inverse of each δ�.
Instead we need a set of functions δ′�′ for �′ ∈ {1, 2, . . . , k′}, such that for ev-
ery (i′1, . . . , i

′
m) ∈ N

m for which there exists a δ� and (i1, . . . , im) such that
δ�(i1, . . . , im) = (i′1, . . . , i

′
m), then there exists a δ′�′ such that δ′�′(i

′
1, . . . , i

′
m) =

(i1, . . . , im). (The number k′ of opposite functions may be larger or smaller than
k.) Knowing the stencil and its opposite makes us able to trace out the compact
data dependency graph from the initial values.

Following [5], parallelising a program is to embed the program’s data de-
pendency pattern into the space-time of the target computer’s communication
structure. This information can be provided by a mapping of the nodes of the de-
pendency graph to space-time coordinates of the target computer. Allowing the
programmer to define this mapping, gives explicit control over the parallelisation
at a very high abstraction level.

The Sapphire compiler uses this information to generate an imperative pro-
gram which traces the compact data dependency graph from the initial values.
The imperative program generates the nodes of the graph when they are first
activated in the computation, and reclaims the nodes as soon as they have been
computed and their values passed on in the graph. Parallel code is generated
using MPI.
1 If we limit the form of the δ�, we get a recurrence relation.



760 Magne Haveraaen

3 Example: Heatflow in One Dimension

The one-dimensional heat flow equation, α2 ∂2u(x,t)
∂x2 = ∂u(x,t)

∂t , describes the heat
distribution u(x, t) in a one-dimensional rod along the x-axis at time t. Here α
is a physical constant describing the heat transfusion properties of the rod. To
turn the equation into a recursion we may use the finite difference method both
in time and space, giving

u(x, t) = κu(x + ∆x, t − ∆t) + (1 − 2κ)u(x, t − ∆t) + κu(x − ∆x, t − ∆t),

where κ = α2∆t/∆x2. This simple program has 3 recursive calls per timestep.
Its stencil is given by the δ� functions.

(x, t)
�
�
�

�
�
��

δ3

?

δ2

H
H
H
H
H
Hj

δ1

(x − ∆x, t − ∆t) (x, t − ∆t) (x +∆x, t − ∆t)

As opposites we get the δ′�′ functions.
(x − ∆x, t+ ∆t) (x, t + ∆t) (x +∆x, t + ∆t)

H
H
H
H
H
Hj

δ′1
?

δ′2
�
�
�

�
�
��

δ′3

(x, t)

(By convention we always draw the arrows in the δ� direction.)
The Sapphire compiler translates this code to non-recursive ANSI C, which

traverses the compact graph of the stencils bottom-up. A series of tests were
run sequentially on one processor of a SGI Cray Origin 2000 machine. At each
timestep the heat distribution for all discrete x-values is computed. The running
time of the generated C program clearly grows linearly with the number of
timesteps.

No. of No. of Execution Measured Ideal
Grid Points Timesteps Time(sec) growth growth

4000 1000 7.83 1 1
4000 2000 15.64 2.0 2
4000 4000 31.24 4.0 4
4000 8000 62.46 8.0 8

Tests of the MPI version on the SGI Cray Origin 2000 shows good parallel
efficiency (1000 timesteps and 80 000 grid points).

No. of Execution Measured Ideal Efficiency
Processors Time(sec) speed-up speed-up Measured/Ideal

2 298 1 1 100%
4 150 2.0 2 100%
8 75 4.0 4 100%
16 38 7.8 8 98%
32 20.5 14.5 16 91%

All tests were run with the machine in ordinary production mode.



Efficient Parallelisation of Recursive Problems Using Constructive Recursion 761

4 Conclusion

Recursive programming is a very efficient problem solving technique, but with
traditional compiler technology this is often prohibitively expensive to compute.
We have suggested supplying the stencil and its opposite as an explicit part of
the program. This makes it possible for a compiler to generate code that traces
the compact data dependency graph in an efficient data-driven fashion. We can
also augment the data dependency graph with information on the distribution of
the computation on the processors of a parallel computer. This yields full control
over the parallel execution of the code, without the need for the programmer to
get involved in the parallel code itself.

Similar approaches have been investigated by other researchers, but in more
restricted contexts. In [6] many approaches based on functional programming are
reported. Some of these utilise the dependency in order to generate data driven
code and parallelise programs, but they do not give the user explicit control over
the opposite dependency. This limits the efficiency of the approaches to cases
where the dependency may be automatically inverted. In an imperative context
Čyras & al. [1] have used dependencies to provide a modular decomposition
of the recursive function (with stencils) from code tracing out the graph (the
opposite stencils). A detailed comparison with our technique is presented in [2].
See [4] for more detailed examples of the constructive recursion technique.

Acknowledgements Thanks to Steinar Søreide who implemented the Sapphire
compiler and did the timings.

References

[1] Vytautas Čyras. Loop synthesis over data structures in program packages. Com-
puter Programming, 7:27–50, 1983. (in Russian).

[2] Vytautas Čyras and Magne Haveraaen. Modular programming of recurrencies: a
comparison of two approaches. Informatica, 6(4):397–444, 1995.

[3] Magne Haveraaen. How to create parallel programs without knowing it. In Proceed-
ings of the 4th Nordic Workshop on Program Correctness – NWPC4, number 78
in Reports in Informatics, pages 165–176, P.O.Box 7800, N-5020 Bergen, Norway,
April 1993.

[4] Magne Haveraaen and Steinar Søreide. Solving recursive problems in linear time
using constructive recursion. In Sverre Storøy, Said Hadjerrouit, et al., editors,
Norsk Informatikk Konferanse – NIK’98, pages 310–321. Tapir, Trondheim, Nor-
way, 1998.

[5] W.L. Miranker and A. Winkler. Spacetime representations of computational struc-
tures. Computing, 32:93–114, 1983.

[6] B.K. Szymanski, editor. Parallel Functional Languages and Compilers. ACM Press;
New York / Addison Wesley; Reading, Mass., 1991.


	Introduction
	Constructive Recursion
	Example: Heatflow in One Dimension
	Conclusion

