
Development of Parallel Algorithms in Data

Field Haskell�

Jonas Holmerin1 and Björn Lisper2

1 Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, S-100 44 Stockholm, SWEDEN,

joho@nada.kth.se
2 Dept. of Computer Engineering, Mälardalen University, P.O. Box 883, S-721 23

Väster̊as, SWEDEN,
bjorn.lisper@mdh.se

Abstract. Data fields provide a flexible and highly general model for in-
dexed collections of data. Data Field Haskell is a dialect of the functional
language Haskell which provides an instance of data fields. We describe
Data Field Haskell and exemplify how it can be used in the early phase
of parallel program design.

1 Introduction

Many computing applications require indexed data structures. The canonical in-
dexed data structure is the array. However, for sparse, distributed applications,
other, more dynamic indexed data structures are needed. It is desirable to de-
velop such algorithms on a high level first, in order to get them right, since the
low level data representations can be intricate.

Data Field Haskell provides an instance of data fields – a data type for general
indexed structures. This Haskell dialect can be used for rapid prototyping of
parallel computational algorithms which may involve sparse structures.

Various versions of the data field model have been described elsewere [1, 2,
3, 4]. The contribution of this paper is a description of an implementation and
an example of how it can be used in parallel program design.

2 The Data Field Model

Data fields are based on the more abstract model of indexed data structures as
functions with finite domain [1, 2]. This model is simple and powerful, but for
real implementations explicit information about the function domains is needed.
Data fields are thus entities (f, b) where f is a function and and b is a bound, a
set representation which provides an upper approximation of the domain of the
corresponding function. We require that the following operations are defined for
bounds:
� This work was supported by The Swedish Research Council for Engineering Sciences

(TFR), grant no. 98-653.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 762–766, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Development of Parallel Algorithms in Data Field Haskell 763

– An interpretation of every bound as a set.
– A predicate classifying each bound as either finite or infinite, depending on

whether its set is surely finite or possibly infinite.
– For every bound b defining a finite set, size(b) which yields the size of the

set and enum(b) which is a function enumerating its elements.
– Binary operations �, � on bounds (“intersection”, “union”).
– The bounds all and nothing representing the universal and empty set, re-

spectively.

These operations are chosen to support the usually assumed set of collection-
oriented operations [7] without revealing the inner structure of the bounds. An
important derived operation is explicit restriction: (f, b) ↓ b′ = (f, b′ � b). The
theory of data fields also defines ϕ-abstraction, a syntax for convenient definition
of data fields which parallels λ-abstraction for functions. See [3, 4].

3 Data Field Haskell

Data Field Haskell is a Haskell dialect where the arrays have been replaced
by an instance of data fields, a variation of the sparse/dense arrays of [3, 4].
Our implementation of Data Field Haskell is based on the NHC compiler [6] for
Haskell v. 1.3. The implementation is sequential and we have not implemented
any advanced optimizations.

datafield defines data field from function and bound
! data field indexing
bounds the bound of a data field
outofBounds an out-of-bounds error value
predicate forms predicate bound from predicate
join, meet “union” and “intersection” of bounds
<\> explicit restriction of data field with bound
inBounds checks if an element belongs to the set defined by a bound
foldlDf folds (reduces) finite data field w.r.t. binary operation

Table 1. Some operations on data fields and bounds.

Data Field Haskell has data types Datafield a b for datafields and
Bounds a for the corresponding bounds. Table 1 lists some functions for data
fields and bounds. It has a rich variety of finite and infinite bounds: dense bounds,
i.e., traditional array bounds, sparse finite bounds, which represent general finite
sets, predicate bounds, which are classified as infinite, universe which represents
the universal set, and empty which represents the empty set. Product bounds rep-
resent Cartesian products and generalise multidimensional array bounds.



764 Jonas Holmerin and Björn Lisper

3.1 Forall- and For-Abstraction

Data Field Haskell provides ϕ-abstraction, with syntax similar to λ-abstraction
in Haskell [5]:

forall apat1 . . . apatn -> exp

The semantics of forall x -> t is datafield (\x -> t) b, where b is com-
puted from bounds of data fields in t as to give an upper approximation of the
domain of \x -> t. It can be thought of as an implicitly parallel, functional
forall statement where first b is computed and then, if needed, \x -> t is
computed for all x in b.

for-abstraction provides a convenient syntax to define a data field by cases
over different parts of its domain. The syntax is

for pat in { e1 -> e ′
1 ; . . . ; en -> e ′

n }

where the ei are bounds and the e′i are data field values. The semantics is a data
field whose bound is restricted by the union of e1, . . . , en and whose value for
each x is e′i ! x, for the lowest i such that x belongs to ei.

4 An Example

We exemplify the use of Data Field Haskell with simulation of a system of
particles over a range of time. Each particle i has a state (r̄i, v̄i) with a position r̄i

and a velocity v̄i. The state transition function (1) gives the new state after time
∆t. These equations are parameterized w.r.t. fi, which yields the acceleration
ai for each particle i from the spatial distribution of the particles. They are
more or less directly expressed1 in Data Field Haskell in Fig. 1. The result is
an executable, dimension-polymorphic specification of particle simulation with
time step dt.

(r̄i, v̄i) �→ (r̄i + v̄i · ∆t, v̄i + āi · ∆t), i ∈ Particles
āi = fi(〈 rj | j ∈ Particles 〉), i ∈ Particles (1)

This specification can be manually refined into a more explicitly parallel al-
gorithm for particle simulation by distributing the particle state onto a set of
processors, and localizing the parallel algorithm by neglecting long-range inter-
actions. The resulting parallel algorithm has a distributed state which consists
of a predicate, a sparse particle datafield, and a neighbourhood bound for each
processor. A processor “owns” each particle in the area defined by its predicate.
After each iteration every processor tests which particles it now owns. This test
is localized to particles originating from the neighbours only. This approxima-
tion is correct only if long-range interactions can be ignored, for instance if we
1 The explicit restriction in p newstate is necessitated by a flaw in the current deriva-

tion of bounds for forall-abstraction. We expect to rectify it in later releases of
Data Field Haskell.



Development of Parallel Algorithms in Data Field Haskell 765

simulate molecules which interact through collisions only. The set of neighbour
processors is described, for each processor, by its neighbourhood bound. Fig. 1
also gives the data type and transition function d_newstate for the distributed
particle simulation. d_newstate first computes, for each processor, the union
of the particles over the neighbours, then a local state transition for these, and
finally it “masks out” the particles which now belong to it. (Since data fields are
not sets we must instead of set union use “prunion”, which gives priority to its
first argument for indices where both arguments are defined.) d_newstate does
not modify the predicate field, but this is possible and could be used to model
adaptive methods where areas for different processors are changed to balance
the load.

data Pstate = PS (Datafield Int Float) (Datafield Int Float)

pos (PS r _) = r

vel (PS _ v) = v

p_newstate dt f s =

forall i ->

let ai = f i s in

PS ((forall k-> ((pos (s!i))!k) + ((vel (s!i))!k)*dt)

<\> bounds (pos (s!i)))

(forall k-> ((vel (s!i))!k) + (ai!k)*dt)

data Dstate proc_id part_id = DS ((Datafield Int Float) -> Bool)

(Datafield part_id Pstate)

(Bounds proc_id)

pred (DS p _ _) = p

state (DS _ s _) = s

neigh (DS _ _ b) = b

prunion d1 d2 =

forall x -> if (inBounds x (bounds d1)) then d1!x else d2!x

prUnion = foldlDf prunion (datafield (\x -> outofBounds) empty)

d_newstate dt f dstate =

forall p ->

DS (pred (dstate!p))

(let {

neighstate = prUnion

(for pn in neigh (dstate!p) -> state (dstate!pn));

newstate = (p_newstate dt f neighstate) }

in newstate <\> predicate(\j -> pred (dstate!p)(pos(newstate!j))))

(neigh (dstate!p))

Fig. 1. Data Field Haskell solutions for the simulation problem: executable spec-
ification, and parallelised version.



766 Jonas Holmerin and Björn Lisper

5 Conclusions

We have presented Data Field Haskell, a Haskell dialect with data fields which
supports a highly flexible form of collection-oriented programming. A possible
application is for rapid prototyping in the early specification phase of parallel
algorithms. We exemplified with the specification and initial development of a
simple parallel particle simulation algorithm. The resulting algorithm specifi-
cation is dimension-polymorphic and easily adaptable to regular and irregular
grids, static or dynamic mappings, and different target architectures.

References

[1] P. Hammarlund and B. Lisper. On the relation between functional and data parallel
programming languages. In Proc. Sixth Conference on Functional Programming
Languages and Computer Architecture, pages 210–222. ACM Press, June 1993.

[2] B. Lisper. Data parallelism and functional programming. In G.-R. Perrin and
A. Darte, editors, The Data Parallel Programming Model: Foundations, HPF Re-
alization, and Scientific Applications, Vol. 1132 of Lecture Notes in Comput. Sci.,
pages 220–251, Les Ménuires, France, Mar. 1996. Springer-Verlag.

[3] B. Lisper. Data fields. In Proc. Workshop on Generic Programming, Marstrand,
Sweden, June 1998. http://wsinwp01.win.tue.nl:1234/WGPProceedings/.

[4] B. Lisper and P. Hammarlund. The data field model. Technical Report TRITA-IT
R 99:02, Dept. of Teleinformatics, KTH, Stockholm, Mar. 1999.
ftp://ftp.it.kth.se/Reports/TELEINFORMATICS/TRITA-IT-9902.ps.gz.

[5] J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel,
A. D. Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. L.
Peyton Jones, A. Reid, and P. Wadler. Report on the programming lan-
guage Haskell: A non-strict purely functional language, version 1.4, Apr. 1997.
http://www.haskell.org/definition/.

[6] N. Röjemo. Garbage Collection, and Memory Efficiency, in Lazy Functional Lan-
guages. PhD thesis, Department of Computing Science, Chalmers University of
Technology, Gothenburg, Sweden, 1995.

[7] J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE,
79(4):504–523, Apr. 1991.


	Introduction
	The Data Field Model
	Data Field Haskell
	Forall- and For-Abstraction

	An Example
	Conclusions

