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Abstract. Performance prediction is useful in helping parallel program-
mers answer questions such as speedup scalability. Performance predic-
tion for parallel simulation requires first working out the performance
analyzer algorithms for specific simulation protocols. In order for the
prediction results to be close to the results from actual parallel execu-
tions, there are further considerations when implementing the analyzer.
These include (a) equivalence of code between the sequential program
and parallel program, and (b) system effects (e.g. cache miss rates and
synchronization overheads in an actual parallel execution). This paper
describes our investigations into these issues on a performance analyzer
for a conservative, “super-step” (synchronous) simulation protocol.

1 Introduction

Parallel programmers often use performance predictions to better understand
the behavior of their applications. In this paper, we discuss the main imple-
mentation issues to consider in order to obtain accurate and reliable prediction
results. The performance prediction Studym is carried out on a parallel discrete-
event simulation program for wafer fabrication models. Specifically, we designed
a performance analyzer algorithm (also referred to as a parallelism analyzer algo-
rithm), and implemented it as a module that can be “plugged” into a sequential
simulation to predict performance of a parallel run.

! The work was carried out when the first two authors were with Gintic. The project
is an on-going research effort between Gintic Institute of Manufacturing Technol-
ogy, Singapore, and School of Applied Science, Nanyang Technological University,
Singapore, to explore the use of parallel simulation in manufacturing industry.
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Fig. 1. Predicted and actual speedups for 4 processors using conservative syn-
chronous protocol. (a) one event pool per simulation object and per LP. (b)
thread-stealing turned on and turned off in the Active Threads library. (c) spin-
lock barrier and semaphore barrier.

2 Analyzer for Conservative Simulation Protocol

The parallel conservative super-step synchronization protocol and the perfor-
mance analyzer for the protocol are described in [I]. The simulation model is
partitioned into entities which we refer to as logical processes (LPs), such that
LPs can only affect one another’s state via event messages. In our protocol, the
LPs execute in super-steps, alternating between execution (during which events
are simulated) and barrier synchronization (at which point information is ex-
changed among the LPs).

The performance analyzer is implemented as a “plug-in” module to a se-
quential simulator. The events simulated in the sequential simulator are fed into
the performance analyzer to predict the performance of the parallel conservative
super-step protocol as the sequential simulation progresses.

Our simulation model is for wafer fabrication plants and is based on the
Sematech datasets [3]. The parallel simulator uses the Active Threads library [4]
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as part of its runtime system. A thread is created to run each LP. Multiple
simulation objects (e.g. machine sets) in the model are grouped into one LP.
Both the sequential and parallel simulators are written in C++ using GNU g++
version 2.7.2.1. Our timings were measured on a four-processor Sun Enterprise
3000, 250 MHz Ultrasparc 2.

3 Issues for Accurate Predictions

Code equivalence and system effects are two implementation issues to be con-
sidered in order to obtain accurate results from the performance analyzer. To
achieve code equivalence between the parallel simulator and the sequential sim-
ulator, we had to make the following changes:

(1) To get the same set of events as in a parallel implementation, the sequential
random number generator in the sequential implementation is replaced by the
parallel random number generator used in the parallel implementation.

(2) A technique known as pre-sending [2] is used in the parallel simulation to
allow for more parallelism in the model. If the sequence of events in the sequential
simulator is such that event E; generates E2 which in turn generates E3, pre-
sending may allow event F; to generate Fo and F3 simultaneously. The event
execution time of F; with pre-sending may be different from the non-presend
version. We modified the sequential simulator to use the pre-sending technique.
(3) Our sequential code has a global event pool manager managing event objects
allocation and deallocation. The parallel code initially has one local event pool
manager associated with each simulation object. We modified the parallel code
to have one event pool for each LP. (A global event pool would have introduced
additional synchronization in the parallel code.) Table Ih shows that external
cache miss rates for datasets 2 and 4 are reduced. The corresponding speedups
are also improved (Figure [[h). The actual speedup with one event pool per LP
is now closer to the predicted trend.

There are two sources of system effects that affect the performance of a parallel
execution:(a) cache effects (b) synchronization mechanisms used.

Cache effects Our parallel implementation uses the Active Threads library [4]
facilities for multi-threading and synchronization. The library has a self load-
balancing mechanism in which an idle processor will look into another processor’s
thread queue and, if possible, try to “steal” a thread (and its LP) to run. Dis-
abling the thread-stealing improves the cache miss rates (Table[b) and brings
the actual speedup curve closer to the predicted one (Figure [b).

Program synchronization At the end of each super-step in the simulation
protocol, all the LLPs are required to synchronize at a barrier. We experimented
with two barrier implementations: (a) using semaphore and (b) using spinlock.
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Data set 1 2 3 4 5 6

Parallel (One event pool per simulation object)| 6.4% 8.4% 10.9% 12.2% 7.2% 7.1%

Parallel (One event pool per LP) 6.0% 6.3% 11.9% 12.2% 5.9% 7.3%

Sequential 0.36% 0.29% 0.18% 0.12% 0.50% 0.61%
(a)

Data set | 1 2 3 4 5 6

Parallel (1 event pool per LP, thread stealing on)

References [373.8 x 106 820.7 x 106 1627.1 x 10% 83.9 x 10% 368.4 x 106 344.4 x 106
Hits 332.5 x 106 735.4 x 106 1378.1 x 106 69.5 x 106 329.2 x 106 305.9 x 106
Miss % 11.1 10.4 15.3 17.2 10.6 11.2
Parallel (1 event pool per LP, thread stealing off)

References [379.3 x 106 730.2 x 106 1736.3 x 10® 79.3 x 106 328.5 x 106 382.0 x 106

Hits 356.6 x 10 684.1 x 106 1529.3 x 106 69.7 x 106 309.0 x 106 354.0 x 109

Miss % 6.0 6.3 11.9 12.2 5.9 7.3
(b)

Table 1. External cache miss rates for (a) parallel implementation using one
event pool per simulation object, one event pool per LP, and sequential execu-
tion; (b) parallel implementation when thread-stealing mechanism in the runtime
system is turned on or off.

We estimated the time of each barrier from separate template programs. The
estimate is 35 us for a “semaphore barrier” and 6 us for a “spinlock barrier”. The
total synchronization cost is obtained from multiplying the per-barrier time by
the number of super-steps that each dataset uses. Figure [[k shows the predicted
and actual speedup curves (with thread-stealing disabled) for both barriers. The
predicted and actual speedup curves for “semaphore barrier” match quite closely.
There is however still a discrepancy for the corresponding curves for “spinlock
barrier”. Our guess is that the template program under-estimates the time for a
“spinlock barrier” in a real parallel program.

4 Conclusion

This paper describes the implementation lessons learnt when we tried to match
the trends in a predicted and an actual speedup curve on a 4-processor Sun
shared-memory multiprocessor. The main implementation issue to take note of
is that the code actions in a sequential program should be comparable to what
would actually happen in the corresponding parallel program. The lessons learnt
was put to good use in implementing a new performance analyzer for a conser-
vative, asynchronous protocol. Also, in trying to get the predicted and actual
curves to match, the parallel simulation program was further optimized.
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