
Fast Cloth Simulation with Parallel Computers

Sergio Romero, Luis F. Romero, and Emilio L. Zapata

Universidad de Málaga, Dept. de Arquitectura de Computadores, P.O. Box 4114,
E-29080, Spain,

{sromero,felipe,ezapata}@ac.uma.es

Abstract. The computational requirements of cloth and other non-rigid
solid simulations are high and often the running time is far from real time.
In this paper, an efficient solution of the problem on parallel computer
is presented. An application, which combines data parallelism with task
parallelism has been developed, achieving a good load balancing and
minimizing the communication cost. The execution time obtained for
a typical problem size, its super-linear speed-up, and the iso-scalability
shown by the model, will allow to reach real-time simulations in sceneries
of growing complexity, using the most powerful multiprocessors.

1 Introduction

Cloth and flexible material simulation is an essential topic in computer animation
of realistic virtual humans and dynamic sceneries. New emerging technologies,
as interactive digital television and multimedia products, make necessary the
development of powerful tools able to perform real time simulations. There are
several approaches to simulate flexible materials. These methods can be classified
in physically-based, geometrical and hybrid models (a combination of both). The
former provide reliable representations of the behavior of the materials, while
the others require a high degree of user intervention making them unusable
for interacting applications. In this work, a physically-based method has been
chosen. In a physical approach, clothes and other non-rigid objects are usually
represented by interacting discrete components (finite elements, springs-masses,
patches) each one numerically modeled by an ordinary differential equation: ẍ =
M−1f(x, ẋ), where x is the vector of position of the masses M . The derivatives
of x are the velocities ẋ and the accelerations ẍ.

The model presented considers both spring-mass and triangle mesh formu-
lations. The former is usually applied with solids, while the later works better
for clothes. Equations in most formulations contain non-linear components, that
are typically linearized using a Newton method, generating a linear system of
algebraic equations where positions and velocities are the unknowns. So, these
different formulations can be merged, giving an unified system where 2D and 3D
models are simultaneously solved, an essential topic when interactions among
bodies occur. The use of explicit integration methods, such as forward Euler
and Runge-Kutta, results in easily programmable code and accurate simulations
[6]. They have been broadly used during the last decade, but recent works [1]

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 491–499, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

492 Sergio Romero, Luis F. Romero, and Emilio L. Zapata

demonstrate that implicit methods overcome the performance of explicit ones,
assuming a non visually perceptible lost of precision. In the composition of vir-
tual sceneries, appearance, rather than accuracy, is required. So, in this work,
an implicit technique, backward Euler method, has been used to solve equation
(1) where v = ẋ.

d

dt

(
x

v

)
=

(
v

M−1f(x, v)

)
(1)

The detection of collision between simulated objects is critical and the com-
putational cost can be extremely high [7]. To avoid an exhaustive collision detec-
tion test that requires time O(n2), an spatial-temporal coherence strategy has
been implemented. In the case of collision, additional forces are introduced to
maintain the system in a legal state.

In this work, the key factors, like data distribution, load balancing and com-
munication overhead, have been considered in order to obtain a high speed-up
for the related problem. The application code has been implemented on a cache-
coherent shared memory platform (SGI Origin 2000), and may be easily ported
to other multiprocessors and multicomputers.

In section 2, a description of the used models and the implementation tech-
nique for the implicit integrator are presented. Also, the resolution of the result-
ing system of algebraic equations, by means of the Conjugate Gradient method,
is analyzed. In section 3, the parallel algorithm and the data distribution tech-
nique for a scenery is shown. Finally, in section 4, some results and conclusions
are presented.

2 Implementation

To create animations, a time-stepping algorithm has been implemented. Every
step is mainly performed in three phases: computation of forces, determination
of interactions and resolution of the system. The iterative algorithm is shown in
figure 1.

The Update State procedure computes the new state of the system, which
is made up of the position and velocity of each element, calculated from the pre-
vious one. Compute Forces, Collision Detection and Solve System stages
are described below.

2.1 Forces

Forces and constraints are evaluated on every discrete element in order to com-
pute the equation coefficients for the second Newton’s law. For a practical
and general application, both spring-mass discretization —of 2D–3D objects, as
shown in figure 3— and triangular patches —for the special case of 2D objects
like garments, as shown in figure 2— have been included. The particular forces
considered are: Visco-Spring forces mapped on the grid for the former model;
and Stretch, Shear and Bend forces for the later. In both cases, gravity and air

Fast Cloth Simulation with Parallel Computers 493

INITIAL STATE

SOLVE SYSTEM

)(*X=B

UPDATE STATE

COMPUTE FORCES COLLISION DETECTION

Fig. 1. Simulation Diagram.

drag forces have been also included. The backward Euler method approximates
the second Newton’s law by the equation (2),

∆v = ∆t·M−1· f(xi +∆x, vi +∆v) (2)

being ∆x = ∆t(vi + ∆v). This is a non-linear system of equations which has
been time-linearized by one step of the Newton method as follows:

fi+1 = f(xi+1, vi+1) = fi +
∣∣∣∣∂f

∂x

∣∣∣∣
i

∆x+
∣∣∣∣∂f

∂v

∣∣∣∣
i

∆v (3)

An energy function Eα for every discrete element α is analytically described;
the forces acting on particle i are derived from fi = −∂Eα/∂xi and the arising
coefficients from the analytical partial derivations in equation (3) have been
coded for its numerical evaluation. All above gives a large system of algebraic
linear equations with a sparse matrix A of coefficients.

2.2 Collisions

In the case of cloth simulation, the self-collision detection and the human-cloth
collisions may be critical and the computational cost can be extremely high
[7]. In order to detect possible interactions and forbidden situations, like col-
liding surfaces or body penetrations, a hierarchical approach based on the use
of bounding-boxes combined with a spatial-temporal coherence strategy have
been implemented. In these cases, additional forces are introduced in the system
matrix to keep the simulation in a legal state. These forces are included in the
system as described above.

494 Sergio Romero, Luis F. Romero, and Emilio L. Zapata

In the global scenery, every pair of objects have to be checked to detect if col-
lisions occur. In a hierarchical approach each object is associated with a binary
tree of Axis Aligned Bounding Boxes (AABBs), in which root node represents
a box that enclose the whole object and the leaves enclose only single triangles
of the surface. To detect when two objects collide and to determine which pairs
of triangles are too close, a simple recursive algorithm can be used. In order
to exploit the temporal and spatial coherence a more elaborated algorithm is
necessary. In general, when searching collision between two subtrees, two possi-
bilities may occur: the corresponding boxes overlap or not. In the first case the
algorithm must go on down the trees until the compared nodes are both leaves,
in this case, if the boxes overlap a pair of triangles can be very close or touching
them selves, and then it is added to the possible collision list. In the other case,
the non-overlapped boxes have a minimum distance, and this distance is added
to another non-collision list. Pair of triangles sharing a vertex will never be an
element in any list.

In the following steps, it is not necessary to check every pair of objects and
all the subsequent hierarchy. The possible collision list is reviewed, if the AABBs
overlap, the element remains in the list, otherwise, the element is deleted and
the calculated distance between the AABBs is added to the non-collision list.
Every element in the non-collision list is recomputed using a heuristic, in order
to predict when the given AABBs do overlap, in a robust way.

Once these lists are filled, every pair of triangles in the possible collision list
is evaluated to determine if repulsion forces must be added in the matrix A.

The main problem is that the non-collision list can grow up to O(n2) because
old collisions are always checked on the following steps. In practice, garments only
collide with a small, fixed part of the body, so the lists remain in a manageable
size. In any case, if the list grows above a given limit, the collision detection
system can be restarted.

2.3 Solver

In the Solve System procedure, the unknowns ∆v are computed. As stated
above, implicit integration methods require the resolution of a large, sparse lin-
ear system of equations that must be simultaneously fulfilled. An iterative solver,
the preconditioned conjugate gradient (PCG) method, has proven to work well,
in practice. This method requires relatively few, and reasonably cheap, iterations
to converge [1]. The choice of a good preconditioner can result in a significant re-
duction of the computational cost in this stage. The Block-Jacobi preconditioner
has been chosen for the implementation, because of its good parallel behavior
[5]. Due to the nature of the problem, blocks have been formed grouping the
physical variables (∆vx, ∆vy, ∆vz) of the particles, so the block dimension is
3× 3. A minimization of the norm (r(i)T P−1r(i))1/2, being P the preconditioner
matrix and r(i) = Ax(i)−b the residual, is the chosen stopping criterion. Heavier
particles are so enforced to be closer to the exact solution.

Fast Cloth Simulation with Parallel Computers 495

Fig. 2. Flags blowing in the wind and a virtual body wearing a shirt.

3 Parallelization

The parallelization of the model has been performed on a non-uniform memory
access (NUMA) multiprocessor architecture. The sequential code (see section
3.1) exhibits irregular access patterns to the data that current parallelizing com-
pilers [4] are insufficiently developed to deal with, leading to non efficient parallel
codes. Irregular codes can be parallelized using the inspector-executor paradigm.
In run time, the inspector locates non-local data for each processor. Afterwards,
an executor must gather non-local data before operate and must scatter the
result after it. This strategy introduces a significant overhead, proportional to
the number of non-local data accesses. So, a shared memory model and a data
parallelism strategy, usual techniques in the state-of-the-art, have been used, in-
stead of the run time library. Task parallelism has been also considered for the
collision detection stage.

The distribution of the objects in a scenery between the processors is per-
formed using a proportional rule based on the number of elements (particles, tri-
angles,. . .). The redistribution and reordering of the elements, inside an object
among the assigned processors, have been performed using domain decomposi-
tion methods. The sparsity pattern of the matrix A is perfectly known, because
every non-zero component, with about 12–15 in a row, are the neighbours af-
fecting a given particle for a given tessellation of the object. A Compressed
Row Storage (CRS) of the matrix is used in order to minimize memory usage.
A striped ordering results in a thin banded diagonal which will produce the
parallel distribution with less communication expenses. The Multiple Recursive
Distribution (MRD), has higher locality, which will result in a better cache usage
[2]. Both have been used in this work with good results, but the choice of the
method will depend of the scenery and the computational platform.

496 Sergio Romero, Luis F. Romero, and Emilio L. Zapata

3.1 Forces

In the core of the forces evaluation stage, loops like the one presented below1

are found.

for (i=0;i<NumForces;i++) {
partic0 = List[i][0];
partic1 = List[i][1];
force = computeForce(partic0,partic1);
AccForce[partic0] = AccForce[partic0] + force;
AccForce[partic1] = AccForce[partic1] - force;

}

where computeForce does not contain any reference to the array AccForce[]. As
there are more forces than particles, this is a typical vector reduction operation,
and AccForce[] is known as reduction array. The subscript array List[][]
depends on the loop index i, appearing in both sides in the assignment sentence,
through the variables partici. In the implicit integration model, both the rhs
and the system matrix are handled as reduction arrays.

In a parallel environment, two or more processors must synchronize them-
selves and invalidate their cache copies to actuallize the same memory position
(AccForce). To overcome this overhead, those particles are replicated in the
different processors id in a private data structure Aid. The loop can now be
parallelized, and the final result is the accumulation of the contributions from
the processors, A = ΣAid. A new overhead appears in the accumulation stage,
which depends on the number of replicated particles. A good reordering of both
AccForce and List structures reduces the number of replications and minimizes
the number of processors where each particle has been hosted.

3.2 Collisions

The lists involved in collisions are distributed among the processors, which com-
pute new contributions to the coefficients of matrix A. As above, such coefficients
are replicated in Aid to avoid write dependences, and after this step the accu-
mulation into A is done. When collision occurs, the matrix A has a new sparsity
pattern because additional coefficients have to be included in unexpected posi-
tions. A practical solution is to store them in an additional matrix Ac, also in
compressed format.

If lists become longer than a given limit, new lists have to be recomputed from
the AABB trees. Dealing with hierarchical data structures, it is difficult to use
the data parallellism and it is better to keep the sequential code. An additional
processor is used to perform this task, without increasing the simulation time.
Resulting data are not inmediately required, so the simulation can go on while
this task is completed.

1 Note that this code corresponds with an explicit integration method, but the discus-
sion can be extended to an implicit one.

Fast Cloth Simulation with Parallel Computers 497

Fig. 3. Some frames of a sponge falling downstairs.

3.3 Conjugate Gradient

The PCG algorithm has been parallelized following a well-known strategy in
which the successive parts of the vectors and the properly aligned rows of the
matrices are distributed among the processors. This data partition matches with
the distribution of the particles in the mesh. Computations inside a processor
have been performed using sequential BLAS libraries, which are specially opti-
mized for the underlying hardware.

Using this scheme of PCG [5], very few accesses to remote memories and syn-
chronization points are required along the iterative process. In particular, three
global synchronization points, one for every inner product and one for the com-
putation of the convergence criterion, are required. Accesses to remote memories
are carried out in these steps and also during the matrix-vector product.

4 Results and Conclusions

Figure 2 shows a human body wearing a shirt and several flags under different
windy conditions and figure 3 shows some frames of a simulation of a sponge
falling downstairs. In figure 4, the execution time in seconds, of one second of
simulated time, and their corresponding efficiency, as a function of the number
of processors, for three example models, are shown respectively. These figures
correspond to simulations, under windy conditions, of flags of different com-
plexity, with 599, 2602 and 3520 particles respectively. Each curve in a graph
corresponds to the original unsorted data, MRD and striped sort distributions.
These results has been obtained using an SGI Origin2000 computer with R10000-
250Mhz processors. A real time simulation is obtained for the former model, with
six processors using striped ordering. The efficiency of the third model shows a
superlinear speed-up, which is a consequence of the increment of the ratio com-
putation/communication. It can be observed that striped distribution is clearly
faster than MRD for more than two processors, due to the minimization of the
accumulation stage overhead.

The computational load of this problem is heavy enough to obtain good effi-
ciencies, even for the simplest models. For larger models, the speed-up grows and
gets linear, when problems of typical complexity are dealt with. A proportional

498 Sergio Romero, Luis F. Romero, and Emilio L. Zapata

1 2 3 4 5 6 7 8
Number of Processors

0.0

1.0

2.0

3.0

4.0

T
im

e
(s

ec
on

ds
)

Striped
MRD
Disordered

1 2 3 4 5 6 7 8
Number of Processors

0.0

5.0

10.0

15.0

20.0

T
im

e
(s

ec
on

ds
)

Striped
MRD
Disordered

1 2 3 4 5 6 7 8
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

T
im

e
(s

ec
on

ds
)

Striped
MRD
Disordered

1 2 3 4 5 6 7 8
Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy

Striped
MRD
Disordered

1 2 3 4 5 6 7 8
Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0
E

ffi
ci

en
cy

Striped
MRD
Disordered

1 2 3 4 5 6 7 8
Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ci
en

cy

Striped
MRD
Disordered

Fig. 4. Execution Time, Speed-up and Efficiency graph for 599, 2602 and 3520
particles.

increment of the number of processors and the size of the problem keeps the
efficiency in an almost constant value. This property (isoefficiency, [3]) ensures
the validity of the presented model for large simulations.

The use of more recent computers and a higher number of processors for mod-
els with more particles/triangles will allow real time simulations. The scenery
complexity, considering interaction between several objects, will be improved as
the speed of the microprocessors increases.

References

1. Baraff, D., Witkin A.: Large Steps in Cloth Simulation. In Michael Cohen, editor,
Computer Graphics (SIGGRAPH 98 Conference Proceeding), pages 43–54. ACM
SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.

2. Romero, L.F., Zapata E.L.: Data Distribution for Sparse Matrix Vector Multiplica-
tion. Parallel Computing Vol. 21, pp. 583–605, 1995.

3. Gupta, A., Kumar, V., Sameh, A.: Performance and Scalability of Preconditioned
Conjugate Gradient Methods on Parallel Computers. IEEE Trans. on Parallel and
Distr. Systems, Vol. 6, No. 5, pp. 455–469, 1995.

4. Silicon Graphics Inc. MIPSpro Auto-Parallelizing Option Programmer’s Guide.

5. Dongarra, J., Duff, I.S., Sorensen, D.C., Van der Vorst, H.A.: Numerical Linear
Algebra for High-Performance Computers Software, Environments and Tools series.
SIAM, 1998.

6. Volino, P., Courchesne, M., Thalmann, N.: Versatile and efficient techniques for
simulating cloth and other deformable objects. Computer Graphics, 29 (Annual
Conference Series):137–144, 1995.

Fast Cloth Simulation with Parallel Computers 499

7. Volino, P., Thalmann, N.: Collision and Self-collision detection: Efficient and Robust
Solutions for Highly Deformable Objects. Computer Animation and Simulation’95:
55–65. Eurographics Springer-Verlag, 1995.

	Introduction
	Implementation
	Forces
	Collisions
	Solver

	Parallelization
	Forces
	Collisions
	Conjugate Gradient

	Results and Conclusions

