
A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 595-599, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Algorithms for Routing AGVs on a Mesh Topology

Ling Qiu and Wen-Jing Hsu

Centre for Advanced Information Systems, School of Applied Science
Nanyang Technological University, Singapore 639798

{P146077466, hsu}@ntu.edu.sg

Abstract: This paper proposes to adapt parallel sorting/message routing
algorithms to route Automated Guided Vehicles (or AGVs for short) on mesh-
like path topologies. Our strategy guarantees that no conflicts will occur among
AGVs when moving towards their destinations; a high degree of concurrency
can be achieved during our routing process.

1.   Introduction

From a computer science perspective, Automated Guided Vehicles (or AGVs for
short) systems are intrinsically parallel and distributed systems that require a high
degree of concurrency. Many algorithms for scheduling and routing of AGVs have
been proposed, however, most of them are applicable to systems with a small number
of AGVs, offering only low degree of concurrency [1]. With drastically increased
number of AGVs in recent applications (e.g. in the order of a hundred in a container
terminal), efficient scheduling and routing algorithms are needed to resolve the
increased contention of resources (e.g. path, loading and unloading buffers) among
AGVs. Because they often employ regular route topologies, the new applications also
demand innovative strategies to increase system performance.

In this paper, we apply ideas arising from parallel processing and adapt sorting
algorithms to route AGVs concurrently on a mesh path. Based on our routing strategy,
all AGVs can reach their destinations within )( nlognO  steps of well-defined
physical moves in an nn ×  mesh. No conflicts, congestion, livelocks or deadlocks
among the AGVs will occur, and a very high degree of concurrency can be achieved.

The remaining part of the paper is organized as follows. We describe the problem
in Section 2. Section 3 gives the routing algorithm. Section 4 concludes the paper.

2.   The Problem

Many AGV applications employ regular path topologies, such as mesh. As a case in
point, presently at Nanyang Technological University, Singapore, the application of
AGVs in a container handling system is being studied [1 � 4]. The main goal is to
schedule and route AGVs within a mesh-like path and container stacking areas (as
shown in Fig. 1).  In a container port, an AGV could originate from a location near
one of the container cranes at a ship, and have a destination at a yard area; similarly,
an AGV could also reverse the direction of its trip, i.e., start from a yard location and



596           Ling Qiu and Wen-Jing Hsu

end up near a crane (refer to Fig. 1). It is also possible for an AGV to move from a
yard area to another. Based on this reality, we formulate the problem as shown in Fig.
2 which is practical and commonly encountered: AGVs are assumed to originate from
arbitrary buffers and supposed to end up at the others, how to efficiently route all
AGVs such that they can reach their destinations without conflicts? However, to
clearly explain the main ideas of our routing process, we will start from an essential
scenario as shown in Fig. 3. In the model, all AGVs start from the intersection of the
pathways (referred to as �nodes� subsequently) and end their journeys also at the
nodes of the mesh. We will first demonstrate how to adapt the principle of bitonic
sorting to this model, and then extend the result to our primitive problem.

  Figure 1.  The topology of a container port                   Figure 2. The problem formulation

Figure 3.  The essential model             Figure 4.  Extended nodes and the numbering of buffers

3.   The Routing Strategy

3.1  Routing among Nodes

Referring to Fig. 3, assume that the path topology considered is a mesh of N columns
by M ( k2M = ) rows. Thus it has NM ×  nodes in total, which are numbered from 1
to NM × in a row fashion. We have NM ×  AGVs initially stationed at each node.
Every AGV has a unique destination (different from the others). With the numbering
of nodes, it should be clear that the routing of the AGVs amounts to sorting their
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destination IDs, with the data exchanges corresponding to the moves of AGVs. The
major difference is, here we must ensure that the physical moves of AGVs are free of
hazards like collisions; the moves may also be constrained in terms of the spatial
constraints. The following four steps give a detailed description of the routing
algorithm. Readers are referred to [2] for a detailed illustration of the algorithm.

Step 1: Route AGVs in every row concurrently, so that for odd rows AGVs are
sorted into increasing order, and for even rows decreasing.

Step 2: Apply bitonic merging to route AGVs on row 4i-3 to row 4i, where i =
1, 2, �, M/4. Finally, AGVs on row 4i-3 and row 4i-2 are sorted into increasing
order, while AGVs on row 4i-1 and row 4i decreasing order.

In this phase, vehicles first move vertically between row 4i-3 and row 4i-2 or
row 4i-1 and row 4i, then move horizontally within each row.

Step 3: Apply bitonic merging to route AGVs on row 8i-7 to row 8i, where i =
1, 2, �, M/8, we get an increasing sequence of AGVs from row 8i-7 to row 8i-4
and a decreasing one from row 8i-3 to row 8i.

Step 4: Apply operations similar to Step 3 to route AGVs on row
)12(i2 jj −−  to row i2 j  repeatedly, for j = 4, 5, �, k and i=1, 2, �, jk2 −  where

k2M = . After this step, every AGV gets to its final destination.

3.2  Routing among Extended Nodes

Now return to the primitive problem as shown in Fig. 2, in which four AGVs initially
station at the buffers near a node. In order to apply the previous routing algorithm, we
define an extended node as a node together with the four associated buffers nearby
(cf. the dotted rectangles as shown in Fig. 4). Every buffer is also numbered in the
form of x.y, where x is the ID of the node while y is the ID of the buffer in the
extended node (cf. Fig. 4). We also assume that every pathway consists of two bi-
directional lanes, and that every AGV has distinct destination from the other. If we
define that (x.y > u.v) holds iif (x > u) or (x = u and y > v), our routing algorithm can
be applied directly to handle this case without any revision. The only difference is that
now the number of AGVs is four times as much as the previous one.

Claim 1: Routed by our algorithm, every AGV can reach it destination after limited
steps of physical moves.       ■

Claim 2: Applying our routing algorithm, no conflicts, congestion or deadlocks
will arise amongst AGVs during the routing process.       ■

Readers are referred to [2 � 4] for the detailed proofs of both claims.

3.3  Complexity of Concurrent Moves

Now let us analyze the time requirement for AGVs to reach their destinations. For this
purpose, assume that the vertical and horizontal path segments are of the same length.
Moreover, mechanically speaking, making a 900-turn (to change from horizontal
direction to vertical direction or vice versa) is usually more expensive (in terms of the
time, space and energy required) than moving in straight lines. Therefore, we will also
analyze the number of 900-turns needed in the algorithm.
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Definition: A rectilinear step is the move required for an AGV to move from a
buffer in an extended node to another buffer in an adjacent extended node, exclusive
of all 900-turns.

Claim 3: Applying our routing algorithm to the scenario shown in Fig. 4, the total
amount of all concurrent rectilinear steps for all AGVs to reach their destinations is
upper-bounded by )( kNMO +  or O(Max{M, N logM}).       ■

Theorem 1: Given arbitrary initial configurations as on an nn ×  mesh as described
in Fig. 2 and Fig. 4, all AGVs will be able to reach their destinations using )( nlognO
concurrent rectilinear steps and )( nlogO  concurrent 900-turns.       ■

Readers are referred to [2, 4] for the detailed proofs of the claim and the theorem.

4   Discussions & Conclusions

This paper has proposed to adapt parallel sorting algorithm to route AGVs on a mesh
path topology. Routed by the routing algorithm, all AGVs can reach their destinations
without conflicts and deadlocks. A high degree of concurrency is also achieved.

In Section 3, we assume that there are two bi-directional lanes in a path. However,
even if there is only one lane, the routing algorithm still works. The only difference is
that in this case every process of swapping has to be finished in two phases, each of
which allows AGVs to move in one direction. Hence the total number of concurrent
steps of moves is doubled, but the complexity order remains the same. Usually, the
cost of space resource is much lower than that of an AGV that can cost as much as a
million dollars per vehicle. From this perspective, it is worthy of obtaining a higher
system efficiency and AGV utilization by dedicating space for lanes or buffers. The
trade-off among space, cost and time (measured by steps of physical moves) is
discussed in detail in [2, 4]. Moreover, if the number of AGVs in an extended node is
less than four or in other words, some of the buffers do not have AGVs initially, we
regard the vacancies as virtual AGVs. Virtual AGVs are numbered with the
maximum destination IDs in the extended node. Thus algorithm still works.

Before each step of routing process is carried out, the system has the idea of global
traffic information upon which the routing decision is made. From this perspective, if
we use the centralized control mechanism, every AGV simply follows the instructions
sent by the central controller. Whereas under the decentralized control mechanism,
the central controller decides when AGVs begin to compare and swap; while the local
controllers of AGVs communicate with each other and coordinate their moves.

For further study, one direction is to relax on the constraints of the problem, in
which case, a proper scheduling may be required. For instance, we need scheduling
when the destinations of AGVs are not all distinct; similarly, when AGVs have
continuous tasks, how to schedule and route them [1]? These outstanding problems
have obvious applications.
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