
Exploiting Data Locality on Scalable Shared

Memory Machines with Data Parallel Programs�

Siegfried Benkner1 and Thomas Brandes2

1 Institute for Software Science, University of Vienna
Liechtensteinstr. 22, A-1090 Vienna, Austria

sigi@ieee.org
2 Institute for Algorithms and Scientific Computing (SCAI)

German National Research Center for Information Technology (GMD)
Schloß Birlinghoven, D-53754 St. Augustin, Germany

brandes@gmd.de

Abstract. The OpenMP Application Program Interface supports paral-
lel programming on scalable symmetric multiprocessor machines (SMP)
with a shared memory by providing the user with simple work-sharing
directives for C/C++ and Fortran so that the compiler can generate par-
allel programs based on thread parallelism. However, the lack of language
features for exploiting data locality often results in poor performance
since the non-uniform memory access times on scalable SMP machines
cannot be neglected. HPF, the de-facto standard for data parallel pro-
gramming, offers a rich set of data distribution directives in order to
exploit data locality, but has mainly been targeted towards distributed
memory machines. In this paper we describe an optimized execution
model for HPF programs on SMP machines that avails itself with the
mechanisms provided by OpenMP for work sharing and thread paral-
lelism while exploiting data locality based on user-specified distribution
directives. This execution model has been implemented in the ADAP-
TOR HPF compilation system and experimental results verify the effi-
ciency of the chosen approach.

1 Introduction

There is now an emerging class of multiprocessor architectures with scalable
hardware support for cache coherence. These are generally referred to as (scal-
able) Shared Memory Multiprocessor (SMP) architectures. Most of these ma-
chines are built via physically distributed memory (ccNUMA) resulting in non-
uniform memory access times and therefore the exploitation of data locality is
a crucial issue for many applications.

The OpenMP Application Programming Interface [15] is intended as a porta-
ble shared memory programming model to be used on SMP architectures. It de-
fines a set of program directives and a library for runtime support that augment
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standard C/C++ and Fortran 77/90. OpenMP is based on thread parallelism
allowing users to exploit shared memory parallelism at a reasonable coarse level.
But OpenMP does not provide any directives for controlling the locality of data.
As a consequence, the user is responsible for achieving high data locality by en-
forcing an appropriate work and data distribution which results in a significantly
higher programming effort.

High Performance Fortran (HPF) [9] is a well established language exten-
sion of Fortran supporting the data parallel programming model. While Fortran
array statements and the FORALL statement are already natural ways of speci-
fying data parallel computations, HPF provides additional directives to assert
independent computations and to advise the compiler how to assign array ele-
ments to processor memories in order to reduce data movements on machines
with Non-Uniform-Memory-Access (NUMA). The HPF mapping directives de-
fine a mapping of data objects (arrays) to abstract processors. Data objects
that have been mapped to a certain abstract processor are said to be owned
by that processor. Ownership of data is the central concept for the execution
of HPF programs. Based on the ownership of data (owner-computes rule), the
distribution of computations to the abstract processors and the necessary com-
munication and synchronization between processors is derived automatically. Up
to now, the compilation and execution of HPF programs is mainly considered for
distributed memory (DM) machines based on a DM execution model, illustrated
in Figure 1(b). In this model, the parallel program generated by the compiler
is executed by a set of (abstract) processors where each processor executes the
same program in its local address space operating only on its own data. Any
two processors communicate by exchanging messages. In accordance with the
SPMD (single-program-multiple-data) paradigm, a HPF compiler has to ensure
that all processors executing the target program follow the same control flow in
a loosely synchronous style. Scalar data and data without mapping directives
are allocated on each processor, i.e. replicated.

In this paper, we present and discuss a highly-efficient execution model for
SMP architectures. It is illustrated in Figure 1(c). In contrary to the DM execu-
tion model that can also be emulated on SMP machines, it takes advantage of
the global address space provided on these machines in order to generate more
efficient code. While the work distribution implied by the mapping directives re-
mains the same as in the DM model, the model uses thread parallelism instead of
process parallelism and keeps the global layout of the mapped data in the global
address space to reduce the overhead for non-local data accesses. Scalar data
and data without mapping directives have only one incarnation in the shared
memory in order to reduce memory overheads.

The SM execution model described in this paper has been implemented
within the public domain HPF compilation system ADAPTOR [1]. This compi-
lation system already supported the DM execution model for a long time. It has
been redesigned to support both execution models in such a way that most of the
compiler modules can be exploited for both models. The user can select the ex-
ecution model by specifying a flag [5]. For the SM execution model, ADAPTOR
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Fig. 1. HPF execution model for distributed and shared memory machines.

generates Fortran code with embedded shared memory parallelization directives
exploiting thread parallelism (e.g. OpenMP, NEC/SX or SGI Fortran directives).
Additional runtime support is available to support data locality.

The experimental results for some applications show that on SMP architec-
tures the SM execution model is more efficient than the DM execution model.
This is especially true for unstructured applications with indirect addressing of
distributed arrays where the DM model requires complex run time support for
the calculation of communication patterns and where the SM model allows direct
access to the shared data.

Related Work

Many authors have addressed certain issues involved in the exploitation of HPF-
like data parallelism via an SMPD execution model on shared memory systems,
especially for optimizing synchronization (e.g. [11, 8]).

On the Origin2000, the SGI data placement directives [14] form a vendor
specific extension of OpenMP. Some of the directives have similar functional-
ity as the HPF directives, e.g. the ”affinity scheduling“ of parallel loops is the
counterpart to the ON clause of HPF.

Chapman, Mehrotra and Zima [6] propose a set of extensions to OpenMP to
provide support for locality control of data, similar to HPF mapping directives,
but they do not provide a detailed execution model or implementation scheme.

Portland Group, Inc. proposes a new high-level programming model [10] that
extends the OpenMP API with additional data mapping directives, library rou-
tines and environment variables. This model offers more capabilities to direct
locality of data and is also applicable for distributed memory systems and SMP
clusters. In contrary to this model, we rely on a uniform data parallel program-
ming model suited for all kinds of architectures.
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2 Thread Parallelism vs. Process Parallelism

For the DM execution model, the HPF compiler generates a program to be
executed by a set of processes where each process executes the same program in
its local address space. This corresponds to the Single-Program-Multiple-Data
(SPMD) paradigm that is also used in the message passing programming model.
All processes follow the same control flow in a loosely synchronous style. Usually
there is a one-to-one mapping of abstract processors (declared at the HPF level
by means of processors directives) to processes and each process is executed on
an individual processor of the parallel target architecture.

Light-weighted processes (threads) are based on the idea of separating the
characteristics of program execution (program counter, stack) from system re-
sources (memory, table of open files). One process can split up in many threads
that have their own stack and program counter, but share all the other system
resources. Operations on threads (creation, context switching) are executed at
least one order of magnitude faster than the corresponding operations on pro-
cesses. Threads are the first choice when using the master/slave paradigm that
is also followed within the OpenMP programming model.

For our SM execution model we chose to generate programs based on thread
parallelism. The main reason for this decision is the fact that the global address
space is available by default and does not have to be allocated via special system
calls. Nevertheless, we follow the SPMD paradigm as far as possible to avoid the
overhead caused by the creation/termination of threads. Attention has been paid
to efficient memory allocation during parallel execution as it must be thread-safe.

3 Data Mapping and Data Layout

For the SM execution model, we changed the default mapping strategy for scalar
data and non-mapped data. While in the DM model every processor is an owner
and gets an own copy of this data, we have now only one incarnation in the global
address space that will be owned by a dedicated processor (master thread). This
strategy for the SM model reduces the memory overhead but might cause some
additional synchronizations. In any case, the user can still replicate explicitly
the data to have the same behavior as in the DM model.

For the mapped data, the HPF mapping directives define a mapping of data
to the abstract processors. This mapping defines the ownership of data. In the
DM execution model, mapped data objects are allocated in a partitioned manner,
such that each processor only allocates those parts of a data object that are
owned by it. The part of a distributed array owned by a processor is referred to
as its local section. Since the size of the local section of a distributed array on a
particular processor usually cannot be determined at compile time, a dynamic
allocation strategy has to be adopted. Since each processor allocates only a
subsection of a distributed array, global addresses of distributed arrays have to be
translated into local addresses. In particular for cyclic and indirect distributions,
these additional local address calculations may add significant overhead.
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On shared memory machines, the availability of a global address space obvi-
ates the need to allocate mapped HPF data objects in a partitioned way. As a
consequence, the original global Fortran layout can be left unchanged. The global
address space offers several advantages regarding the execution of data parallel
programs: translation of global addresses to local addresses is superfluous and
remapping of data changes only the ownership of data but does not imply any
reallocation of data or data movements in memory.

In certain situations, however, the global data layout might decrease the cache
performance due to false sharing. In such cases, a reorganization of distributed
arrays such that all array elements belonging to the same processor are stored
contiguously might be more efficient. We provide a new compiler specific directive
to specify an attribute LOCAL LAYOUT for mapped arrays that implies such a data
layout.

4 Work Distribution

Parallel execution in the HPF execution model is achieved by distributing the
computations to the processors. This task, referred to as work distribution, is
usually based on the owner-computes rule where an assignment to an element of
a distributed array is executed by the processor that owns this element. Thus,
work distribution is derived automatically from the data distribution. The owner
computes rule is not always the best strategy for work distribution. Therefore
alternative strategies may be adopted by an HPF compiler. Moreover, HPF-2
provides the ON clause that allows the user to explicitly control work distribu-
tions.

For the SM execution model, we propose the same work distribution strategy
as in the DM execution model, i.e. the work sharing of parallel loops is derived
automatically from the data distribution of arrays accessed within the loop and
implemented by means of appropriate OpenMP work sharing constructs. There is
only one difference due to the changed default allocation strategy for scalars and
non-mapped arrays. Assignments to such data objects are no longer executed by
all processors (replicated) but only by one dedicated processor (master thread).

5 Communication and Synchronization

By analyzing the data distribution and work distribution, non-local data accesses
can be determined. These non-local data accesses imply data movements between
the involved processors.

In the DM execution model, non-local accesses are implemented by means
of message-passing. As a consequence, each processor has to determine both
the data to be sent to other processors and the data to be received from other
processors. Since all cross-processor dependencies are satisfied in this manner,
no explicit synchronization is necessary. In the context of parallel loops, com-
munication is extracted from the loop body combining single-element messages
into larger messages whenever possible in order to minimize latency (message
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vectorization). In case of indirect addressing, an inspector/executor strategy [13]
should be exploited to derive a communication schedule. Temporary arrays and
buffers become necessary to keep non-local data. The introduction of shadow
edges reduces this memory overhead and simplifies the generated code.

In the SM execution model, a thread can access non-local data directly via
the global address space. Only appropriate synchronization becomes necessary
to ensure that the correct version of the shared data is accessed. This synchro-
nization can be realized either by point-to-point synchronization between the
accessing and the owning processor or by global synchronization via barriers.
Synchronization is extracted from parallel loops utilizing similar techniques as
applied for communication optimization in the DM model. Our straightforward
approach inserts a barrier before and after every independent computation with
non-local accesses (e.g. see Figure 2) avoiding buffers for non-local data and ex-
pensive computation of communication schedules in case of indirect addressing.
A lot of techniques are known to replace barrier synchronization with cheaper
producer-consumer synchronization (e.g. [11]) and for reducing synchronization
costs (e.g. [8]). These techniques might be exploited in an advanced compilation
system.

The compiler will not generate any synchronization for the SM execution
model if there is not any interprocessor communication for the DM model. In
the same way as the RESIDENT directive of HPF allows avoiding redundant in-
terprocessor communication or related overhead for possible communication it
is utilized in the SM model to avoid unnecessary synchronization.

integer, dimension (N) :: K

real, dimension (N) :: A, B

!hpf$ distribute (block) :: A, B

...

B = A(K)

B = B - A

A = A + B

...

(a) original HPF code.

!$omp parallel, private (I,LB,UB)

LB = ...; UB = ...! local range

...

!$omp barrier

do I = LB, UB

B(I) = A(K(I))

end do

!$omp barrier

do I = LB, UB

B(I) = B(I) - A(I)

A(I) = A(I) + B(I)

end do

...

!$omp end parallel

(b) generated OpenMP code.

Fig. 2. Synchronization of non-local accesses.
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6 Private and Reduction Variables

Private variables specified by the NEW clause of HPF become private data of the
threads in the SM execution model. Thus every thread will get its own local
incarnation of the variable. In the DM execution model, every process has its
own incarnation by default and the NEW clause only guarantees that the different
incarnations do not have to be consistent and can therefore have different values.

Reduction variables specified by the REDUCTION clause of HPF are treated
like private reductions when they are not mapped. Every processor gets an own
copy and the values are accumulated at the end of the independent compu-
tations. This is the same strategy for both models, only the accumulation is
handled differently, either by message passing via a global reduction or by accu-
mulating the result to the shared incarnation within a critical section. A tree-like
accumulation in the SM model is supported by the HPF run time system and
might be more efficient for a larger number of processors.

Reduction variables that are mapped arrays are treated differently. In the DM
execution model, the processors allocate non-local copies for those items of the
reduction array that they update. The non-local copies will be accumulated after
the independent computation. In the SM execution model, mapped reduction
arrays will have only one shared incarnation where the reductions on it are
synchronized by locks to ensure that a specific memory location is updated
atomically and not accessed simultaneously by multiple writing threads.

In order to minimize synchronization overheads for the reduction array, the
concept of exclusive ownership has been introduced [3]. An element of the reduc-
tion array is exclusively owned by an abstract processor (thread) if it is owned by
that processor and not updated by any other processor. Synchronization is only
necessary for those elements of the reduction array that are not exclusively owned
while exclusively owned elements can be handled like private data requiring no
synchronization. The concept of exclusive ownership is especially important for
unstructured reductions that are employed in many scientific applications to
implement computations on unstructured meshes or sparse matrices.

7 Experiments and Results

ADI-Kernel with Redistributions

The three-dimensional ADI kernel is a data parallel HPF program which utilizes
five three-dimensional arrays of size 64× 64× 64. The HPF code uses dynamic
arrays and redistributes the five arrays from (*,*,BLOCK) to (*,BLOCK,*) and
vice versa for every of the 10 iterations. Only the redistribution requires commu-
nication in the DM execution model. Table 1 shows the performance results of
the ADI kernel on the NEC SX-4. It compares the data parallel HPF code com-
piled by ADAPTOR for the different execution models. The DM execution model
shows some small speed-ups, but the gain of parallelism in the computations is
mainly lost by the time needed for the redistributions. The SM model utilizes
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a shared global layout of the arrays, therefore the redistributions only require a
synchronization, but no communication and no data movement in memory.

NP = 1 NP = 2 NP = 4 NP = 8

HPF-DM 1.12 s 1.07 s 0.85 s 0.80 s
HPF-SM 1.14 s 0.57 s 0.30 s 0.16 s

Table 1. Execution times of ADI Kernel on NEC SX-4.

Relaxation on an Unstructured Grid

The next example is a relaxation kernel that uses indirect addressing on an un-
structured grid. An integer array specifies for every grid point its four neighbors.
The grid data is block distributed, the numbering of the grid points exploits a
high data locality. Table 2 gives the execution times for a fixed problem size
and different number of processors. Both versions scale, but the SM version is
nearly two times faster than the DM version. The DM version requires complex
compile time and run time support to compute the communication schedules
implied by the indirect addressing. Even when the overhead is amortized over
the iterations by reusing the communication schedule, it remains non-negligible.
This is especially true on the NEC SX-4 where indirect access to shared arrays
can be vectorized but not the computation of the communication schedule.

NP = 1 NP = 2 NP = 4 NP = 8

HPF-DM 4.327 s 1.972 s 1.021 s 0.545 s
HPF-SM 1.940 s 0.983 s 0.500 s 0.264 s

Table 2. Unstructured relaxation on NEC SX-4 (1M grid points, 73 iterations).

Crash Simulation Kernel

For the evaluation of a scientific computation with unstructured reductions, we
used a kernel from an industrial crash simulation code [7]. The kernel is based on
a time-marching scheme to perform stress-strain calculations on a finite-element
mesh consisting of 4-node shell elements. In each time-step elemental forces are
calculated for every element of the mesh and added back to the forces stored at
nodes by means of unstructured reduction operations. Besides the computation
of elemental forces, the unstructured reduction operations to obtain the nodal
forces represent the most important contribution to the overall computational
costs. Table 3 shows the elapsed times measured on an SGI Origin 2000 (MIPSpro
Fortran compiler, version 7.30) for different variants of a crash kernel performing
100 iterations on a mesh consisting of 25600 elements and 25760 nodes. In the
table the entry HPF-DM refers to the HPF version compiled by ADAPTOR for
the DM model using the inspector/executor strategy, HPF-SM to the HPF version
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NP 1 2 4 8 16 32

HPF-DM 6.39 3.58 1.76 0.99 0.61 0.40
HPF-SM 5.10 2.79 1.47 0.74 0.55 0.34
OpenMP 11.39 6.51 3.48 2.06 1.41 1.27

Table 3. Execution times (secs) for crash simulation kernel on the SGI Origin
2000.

compiled for the SM execution model using the exclusive-ownership technique,
and OpenMP to an OpenMP version which synchronizes all updates on the
reduction array.

The irregular mesh used in this evaluation exhibits a high locality. As a
consequence, both the DM version and the SM version that exploit data locality
show very satisfying results. The version using atomic updates for all assignments
to the node array scales but exhibits an overhead of about a factor of two.

8 Summary and Conclusion

In this paper we presented an execution model for data parallel programs that
takes advantage of threads and the global address space provided on SMPs.
Compared to the DM execution model being emulated on SMPs, it avoids the
memory overhead implied by replication of data and by non-local copies of data
and it yields better performance for a range of applications.

In comparison to the OpenMP programming model, data locality specified
in the data parallel HPF program can be exploited directly to achieve better
scalability on larger SMPs. Though OpenMP also allows SPMD style paral-
lelism in which the programmer explicitly partitions work and synchronizes the
processors correctly to achieve comparable performance with optimized message
passing versions, this style results in higher programming effort. If the scheduling
clauses of OpenMP are not conform with the chosen data distribution, the distri-
bution of loop iterations among processors must be done by hand. The absence
of necessary synchronization results in incorrect programs that are difficult to
debug. Furthermore, data parallelism within array statements and FORALL state-
ments is exploited within HPF, but only considered for the next version 2.0 of
OpenMP. Efficient OpenMP reduction is currently only defined for scalars, re-
ductions on an array must be carried out ”by hand“ using other synchronization
mechanisms (e.g. a critical section for private reductions or the atomic directive
for shared reductions).

OpenMP still offers some features that make this programming model more
attrative than HPF for a certain range of applications: OpenMP allows to cre-
ate tasks dynamically and provides features to deal with fluctuating workload,
and in OpenMP, tasks might interact with each other in non-trivial ways. But
recent developments show that these issues can also be addressed in HPF [2, 4].
Nevertheless, dynamic scheduling strategies show non-negligible overhead, e.g.
see [12], and non-trivial task interaction reduces scalability.
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In contrast to other approaches where the HPF and OpenMP programming
model are combined, we rely on a uniform programming model that is appropri-
ate for all architectures. By a hierarchical mapping of data, this programming
model can be also exploited on clusters of SMPs. The first hierarchy defines
the mapping of data to the nodes, the second one defines the ownership for
the processors within the node. The implementation of such an execution model
coupling the DM and SM execution model hierarchically is currently under work.
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[2] G. Antoniu, L. Bougé, R. Namyst, and C. Perez. Compiling data-parallel programs
to a distributed runtime environment with thread isomigration. In The 1999
Intl. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA), vol. 4, pages 1756–1762, Las Vegas, NV, June 1999.

[3] S. Benkner and T. Brandes. Efficient Parallelization of Unstructured Reductions
on Shared Memory Parallel Architectures. In Parallel and Distributed Processing,
Proceedings of 15 IPDPS 2000 Workshops, Cancun, Mexico, Lecture Notes in
Computer Science (1800), pages 435–442. Springer Verlag, May 2000.

[4] T. Brandes. Exploiting Advanced Task Parallelism in High Performance Fortran
via a Task Library. In Amestoy, P. and Berger, P. and Dayde, M. and Duff, I.
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