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Abstract. In many applications, objects are represented by a collection
of unorganized points that scan the surface of the object. In such cases,
an efficient way of storing this information is of interest. In this paper we
present an arithmetic compression scheme that uses a tree representation
of the data set and allows for better compression rates than general-
purpose methods.

1 Introduction

Effective compression of images is a major research area, especially two dimensio-
nal images and video images. Some work has also been done on three dimensional
image compression [CHF96]. A number of these works deal with medical appli-
cations [TP98] where all information, including that related to inner points, is
relevant. However, there exist cases (for instance, most applications in industrial
design), where the only relevant information is conveyed by the surface delimit-
ing the object. In such cases, data are usually provided by a scanner that scans
the surface and outputs a collection of points (given as vectors in the Euclidean
space). Previous work has been done in order to build models that allow for a
suitable geometric description of surfaces of this type so that a highly efficient
codification of the image is achieved [HDD™94]. The cost of such algorithms is
always a crucial issue.

In the simpler case of two dimensional images, the contour of a simply connec-
ted shape can be efficiently coded as a string of symbols. For this purpose it is
enough to choose the direction in which the contour is covered (i.e., clockwise or
counter-clockwise). Then, every point has two neighbors (a predecessor a suc-
cessor) and the string representation is simply generated by writing the relative
position between consecutive points. Usually, 2 dimensional figures are described
as a collection of pixels. Because every pixel has 8 possible neighbors, one byte
is enough to describe the relative position of a pixel with respect to the previous
one. Therefore, if the shape is simply connected, one string contains all the in-
formation needed to reconstruct the shape, except for a global translation that
is not relevant for most purposes. With this method a considerable reduction in
the file size needed to store the information has been reported [GEJ96].
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The method described above allows for simple and fast coding and decoding.
However, in the case of 3D images, some important differences arise:

1. The object is limited by a surface and the number of possible neighbors in
a grid increases to 26.

2. In the usual setting, the scanner precision is much higher than the minimum
distance between points, so that they are no longer adjacent.

3. Because a point in a surface may have more than two neighbors, a priority
has to be established in order to define a path. Even so, it may be impossible
to scan the object surface with a single path that goes only once through
every point.

The last fact suggests that a natural way to describe the surface is using a tree
representation, as we describe in the following section.

2 Data Representation and Modeling

Given a sample of 3D vectors S = {ry,rs,...,r|g/}, we may define the fully
connected graph G where the node set is S and the weight of edge (r;,r;) is
the Euclidean distance between r; and r;. Then, we may build 7', the minimum
spanning tree (MST) of G, with any of the standard algorithms (see, for in-
stance [CLR9I0]). Due to the geometric propertie of the Euclidean space, the
maximal number of neighbors is 12 (12 having probability 0). However, due to
the fact that, in our case, the points are distributed on a surface (that is, locally
on a plane), in practice less than 6 neighbors are always found and the tree width
of T is at most five.

Every node n in the MST with father m is labelled with a vector giving
the difference d(n) = r,,, — r,. For the root node p, we take d(p) = rp. In our
approach, we will compress the information using arithmetic coding [WNC87]
CT91] of the input. For this purpose we need a stochastic models describing the
tree structure and the vector components contained in 7"

1. In order to model the structure of the tree we will compute the probabilities
pr that a node expands in a given number k of siblings. This probability is
estimated as the relative number of subtrees in 1" having k siblings, where
the implicit assumption is done that it does not depend on the position of
the node.

2. In order to code the vector d(n) components, which are floating-point num-
bers, we use three probability distributions Fi(dy), Fa(dz), F5(ds), one for
each component. An efficient coding requires that these distributions should
be analytically invertible. Therefore, rather than using a normal distribution
we rather use logistic sigmoid functions

1
T +exp(—Ni(x — i)
1 This question is related to that of packing spheres with optimal density.
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whose density function is AF;(z)(1 — Fj(x)). The parameters p; and \; are
evaluated from the average and standard deviation o; B of the components
d; of the nodes in T'.

3 Arithmetic Coding of the Data

The arithmetic compression is performed by following a preorder traversal of T'
and coding at each node n the vector d(n) and the number of siblings of node
n. For instance, the tree plotted in the figure the traversal will produce as input
for the encoder the sequence

d(1)3d(2) 0d(3) 2d(5) 0d(6) 1 d(7) 0 d(4) 0

Note that the sequence above consists of 28 input symbols as every vector d(n)

Fig.1. Sample tree.

contains three numbers (d;(n), d2(n) and d3(n)) and every number is conside-
red a different symbol by the arithmetic encoder. The output file contains the
parameter set as a header (the parameters p; and A; together with the proba-
bilities py) with a negligible increase of the file size. Then, arithmetic coding is
performed using alternatively the four models contained in the header. In order
to avoid rounding errors during decoding (due to the 32 bit arithmetics), the
tails of the distribution F' are treated in a special way. Given a certain scanner
precision €, there exists x; > 0 such that

€ €
F(xt—f—*)—F(.Tt— *) :2_32 (2)
2 2
All  such that |x| > x; are considered outliers. In such cases (which are highly
improbable), the code for the region |z| > z; is generated followed by the number
2 uncoded.

2 The parameter \; is related to o; by \jo; = /3.
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4 Results and Discussion

A collection of five different files with a variable number of data (between 4 and
19 thousand points) were compressed with the previously described method. For
the sake of comparison, the raw data were also compressed using 1) a Lempel-Ziv
compressor (gzip); 2) a Huffman coder (bzip2, which uses a Barows-Wheeler
transform) and; 3) an arithmetic coder based on tree-grams described in [Nel91].
The results are presented in table dl Compression rate are defined as the quotient
between file compressed file and file original size.

dataset #|gzip 3-gram bzip2 ours size (bytes)
1 0.36 0.30 0.29 0.22 108758
0.31 0.29 0.27 0.22 253615
0.38 0.32 0.34 0.21 339859
0.36 0.31 0.34 0.20 449768
0.21 0.16 0.11 0.17 484356

Tk W N

Table 1. Compression rate for 5 different data sets.

As shown in the table, our method favorably compares with the existing
general purpose methods and allows for compression rates about 5 which are in
consistently better than those obtained with the other methods.

5 Conclusion

We have implemented an arithmetic coder that compresses files of data contai-
ning points describing the surface of three dimensional objects. The method uses
a simple representation of the surface consisting on a tree of relative positions
between points and modelizes this structure and the components. The time com-
plexity coincides with that of the standard MST construction algorithms. The
compression rates are comparable or significantly better than those obtained
with standard methods. Further refinements on the data modeling may lead to
improved results.
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