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Abstract. The aim of many image mappings is representing the sig-
nal in a basis of decorrelated features. Two fundamental aspects must
be taken into account in the basis selection problem: data distribution
and the qualitative meaning of the underlying space. The classical PCA
techniques reduce the statistical correlation using the data distribution.
However, in applications where human vision has to be taken into ac-
count, there are perceptual factors that make the feature space uneven,
and additional interaction among the dimensions may arise.

In this work a common framework is presented to analyse the perceptual
and statistical interactions among the coefficients of any representation.
Using a recent non-linear perception model a set of input-dependent fea-
tures is obtained which simultaneously remove the statistical and per-
ceptual correlations between coefficients. A fast method to invert this
representation is also presented, so no input-dependent transform has to
be stored. The decorrelating power of the proposed representation sug-
gests that it is a promising alternative to the linear transforms used in
image coding, fusion or retrieval applicationsﬂ.

1 Introduction

Independence among the features is recognized as an intrinsic advantage of a
given signal representation because it allows simple scalar data processing and
a better qualitative interpretation of the feature vector [1J2]. This is why the
aim of most feature extraction transforms is to find out a complete set (a basis)
of independent features. Two main factors should determine the basis selection
problem: the data distribution and the qualitative (geometric) properties of the
underlying space. The basis functions should not only reflect the principal axis
of the training set but also the eventual anisotropies of the space.

This is particularly important in applications involving natural imagery or
texture description, such as indexing and retrieval, fusion, or transform coding.
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In these cases, in addition to the data distribution, it is usually necessary to
take into account the properties of Human Visual System (HVS): not every
scale, texture or colour component has the same relevance for the HVS, and
undesired perceptual interactions among the coefficients may arise if they are
scalarly processed. Therefore, in many applications the concept of independence
of image coefficients has not only a statistical meaning, but it may also be related
to the intrinsic (perceptual) geometry of the space. On the other hand, the HVS
has developed efficient representations to deal with natural imagery [BI4I5]6],
so the knowledge of the geometry of the low-level representation of a general-
purpose biological vision system is of theoretical interest for image processing.

Wavelet and local DCT transforms, are widely used in many applications due
to both statistical and perceptual reasons. On one hand, they are used as an ap-
proximate fixed-basis Principal Component Analysis (PCA). On the other hand,
these transforms are similar to the first linear stage in HVS processing. Howe-
ver, the statistical and perceptual decorrelation obtained with these transforms
is not complete.

Recently developed perception models with non-linear interactions between
the coefficients of wavelet-like representations [7J8/9], can show interesting stati-
stical decorrelation properties [6], but they cannot be used in image processing
applications because they are not analytically invertible.

In this work the basis selection problem is analysed from both the statistical
and the perceptual points of view. Here the covariance and the perceptual metric
matrices are used together to evaluate the statistical and perceptual interactions
between the features under a common framework. Also, a fast method to invert
the most recent perceptual representation [7J8[9/6] is developed and tested. It
is shown that excellent decorrelation results are obtained from both statistical
and perceptual points of view just taking into account the perceptual geometry
of the wavelet-like feature space. In this context, the decorrelating power of
this representation is compared with fixed linear transforms and (unpractical)
PCA-like methods that require the storage of ad-hoc basis functions.

2 Aim of the Feature Extraction Transform

Matrices of Second Order Relations. The statistical deviations from an
image ag in a certain feature space are described by the covariance matrix, I':

I(ag) =& [(a—ao) - (a— ao)T] =& [Aa- AaT] (1)

Assuming a L? norm [8], the perceptual deviation from ag due to a distortion
Aa is determined by the perceptual metric, W, of the domain at that point,

d(ao, ag + A(L)Q = AG,T . W(ao) - Aa = Z W”AGE +2 Z WijAaiAaj (2)
i i#j

Associated non-aligned ellipsoids. The covariance and the perceptual metric
matrices are quadratic forms that describe two different interesting ellipsoids.
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Fig. 1. Ellipsoids describing the data distribution and the space geometry around ag.

On one hand, I' describes the shape of the distribution of image samples
around ag. Non-zero off-diagonal elements in I" indicate a deviation between
the data ellipsoid and the axis of the space. This deviation implies a statistical
correlation between features in the training set. On the other hand, W describes
the shape of the (ellipsoidal) locus of perceptually equidistant patterns from
ag- The diagonal elements of W represent the contribution of each coefficient to
the perceived distortion (eq. ). Non-zero off-diagonal elements induce additional
contributions to the distortion due to deviations in different dimensions, i.e. they
represent perceptual interactions between features that modify the perceived
distortion. This is a convenient way to represent what is commonly referred to
as masking: a distortion in a; may mask the subjective distortion in a;.

In the most general case these two ellipsoids are not aligned, so their eigena-
xis, and the corresponding PCA-like basis functions, are not the same.

Measuring the Statistical and Perceptual Relations Among Features.
The decorrelating efficiency of a feature extraction transform has been tradi-
tionally referred to the diagonal nature of the resulting covariance matrix. As
the non-diagonal elements in W represent the 2nd-order perceptual interactions
between the dimensions of the feature space, here we propose to evaluate the
transforms from the perceptual point of view applying to W the same measures
that have been used for I' in the context of transform coding [2].

In this way, given a matrix, M, that describe the (statistical or perceptual)
relations between the features, a scalar measure (the statistical interaction, 7,
or the perceptual interaction, 7,), can be defined comparing the magnitude of
the off-diagonal coefficients with the magnitude of the diagonal coefficients,

_ iy 1Ml

> | M ®)

Aim of the Feature Extraction Transform. In order to minimise the final
correlations from both statistical and perceptual points of view, the transform
should find out the eigenaxis of both ellipsoids, i.e., it should simultaneously
diagonalise, I" and W, or simultaneously minimise 7,, and 7,,.
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Given a perceptual matrix, W(ag), and using simple linear algebra it can
be obtained the linear transform that simultaneously removes both correlati-
ons [10]. However, due to the highly point-dependent nature of W, a different
linear transform would be necessary for each possible input, which is not a prac-
tical solution.

In this work we take a different approach: we use the current non-linear
perceptual model [7I8OI6] to map a local DCT into a perceptually Euclidean
space. Beyond the obvious perceptual decorrelation, we show that this non-linear
transform has also statistical interest: due to its structure, it also removes the
residual statistical correlations that remain in the DCT, strongly reducing ps.
In this way, both measures, p1s and p,, are simultaneously minimised by a single
adaptive transform which can be inverted without the storage of ad-hoc basis
functions.

3 Visual Models and Associated Perceptual Geometry

Metric and Visual Response. The standard model of human low-level image
analysis has two basic stages. First the image, A, (in the spatial domain) is
transformed into a vector, a, in a local frequency domain (the transform domain)
using a linear filter bank, T'. Then a set of mechanisms respond to each coefficient
of the transformed signal giving an array, r (the response representation):

AL o By (4)

It is well established that the first linear perceptual transform, T, is similar to the
class of wavelet-like transforms employed in many image analysis applications.
This is not a casual result, because the low-level algorithms used by the HVS
should be mainly determined by the statistics of natural images [3J4l516], and,
as a result, linear PCA-like solutions have been developed in the low-level HVS.

Not all the basis functions of the transform 7" are equally perceived so addi-
tional processing, R, is included to explain these non-homogeneities. The HVS
models assume that all the components of the r vector are equally important and
there is no perceptual interaction between them [8I9J6] (i.e. the response domain
is Euclidean), so the (perceptual) geometry of the transform domain (and also
of the spatial domain) must depend on the nature of the response.

Given a response model, R, an explicit expression for the perceptual metric
in any representation space can be obtained. The change of the elements of a
tensor under a coordinate mapping depend on the jacobian of the transform [11].
Applying the expressions for tensor transformation to our case, eq. @l we have,

Wi(a) = VR(a)" - W'(r) - VR(a) (5)

where VR is the gradient (or jacobian matrix) of the non-linear response and,
W' = I, is the metric in the response domain.

Given a particular perception model, i.e. a (T, R) pair, eq. Bl can also be used
to compute the metric, and p,, in any other representation domain.
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Non-Linear Energy Normalisation Model. The current models for R as-
sume that after the application of the linear filter bank, 7', the energy of each
transform coefficient is normalised by a weighted sum of the energy of its neigh-
bours. The dependence with the neighbour coefficients is given by the convolu-
tion with an interaction kernel h [8/6l9],

|ai|?
Bi + (h* |al?); (©)

Q5

~ 100

ri la| + o

Figure Plshows the parameters of this non-linear energy normalisation model
and an example of the response for some basis functions of different frequencies.

The parameters «;, fig. Bla, define a band-pass function that modulates the
strength of the response for each coefficient i. The parameters 3;, fig. B.b, de-
termine the point of maximum slope in each response. The values of o and
[ have been fitted to reproduce amplitude discrimination thresholds without
inter-coefficient masking [12]. A frequency-dependent (one octave width) Gaus-
sian kernel, fig. 2.c, has been heuristically introduced according to the refs. [7I&]
9l6].

For mathematical convenience (see section [Bl) a small linear term (propor-
tional to |a;|) has been included in the response model. This linear band-pass
term (fig. [2la) dominates for very low amplitudes. It is consistent with the fact
that for low amplitude patterns the HVS response is roughly linear and it is well
described by a band-pass function, the Contrast Sensitivity Function (CSF) [13].

In our implementation, the linear transform 7T is a block DCT, and h includes
no spatial interactions between neighbour blocks, but the analytical results can
also be applied to any wavelet-like transform with spatial interactions.

Perceptual Metric using the Non-Linear Normalisation. Taking partial
derivatives in eq. [6l we have the following gradient matrix:

Q; |a] |a? - aj
VR(a)ij; = ——=0b;; + 20 0ii — L hi;i 7
@ = g5+ 2 (G e ~ e o) O
a) b) c) d)
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0.3 o ol | 0 /e
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fi (cpd) fi (cpd) fi (cpd) a.

i

Fig. 2. Parameters of the vision model and non-linear response functions. Here, the
amplitude of the coefficients is expressed in contrast (amplitude over mean luminance)
which ranges between 0 and 1. The response examples of fig. 2ld show the basic (sig-
moid) behaviour of eq.[6 but they are not general because the response to one coeffi-
cient depends on the value of the neighbour coefficients. These particular curves were
computed for the particular case of no additional masking pattern (zero background).
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The slope of the response has three contributions: two diagonal contributions
and one off-diagonal contribution given by the interaction kernel. Note that
from medium to high amplitudes the slope decreases with amplitude, i.e. the
increase in the response is inhibited for high energy coefficients. Also note that
the off-diagonal contribution is always negative, i.e. the increase in the response
to one coefficient is also inhibited by high energy neighbour coefficients.

The non-diagonal contributions in VR give non-diagonal elements in W (see
fig. B). It is clear that the relative perceptual relevance of the DCT features
highly depend on frequency (the diagonal of W has a low-pass shape), i.e. the
DCT feature space is perceptually anisotropic. It is also clear that DCT features
are not perceptually independent because W' is not diagonal, i.e. the perceptually
privileged directions of the DCT feature space are not aligned with the axis of
the space. This implies that an additional transform is needed to remove the
perceptual correlation between the DCT features.

As the metric is input-dependent there are no global privileged directions in
the space. This implies that the decorrelation transform must be local.

4 Joint Statistical and Perceptual Decorrelation through
the Non-linear Normalisation Model

In this work the non-linear normalisation model is proposed as a feature decorre-
lation mapping from both statistical and perceptual points of view. First because
it transforms the DCT domain in a perceptually Euclidean space, and second,
because, its structure makes it a special form of predictive coder, therefore the
output, 7, should show less statistical correlation than the input DCT.

The basic idea of predictive coding (or DPCM) [I4] is to remove from each
coefficient the part that can be predicted from its neighbours. If a prediction
of each coefficient is discounted from the original signal in some way, the cross-
correlation between neighbour coefficients of the result will be highly reduced. In
the commonly used DPCM the discount is linear: the prediction is substracted
from the input giving a decorrelated error signal [14].

The normalisation by a weighted sum of the neighbour coefficients can be
interpreted as a (non-linear) divisive DPCM (see fig. B): if the central point of
the kernel is set to zero (i.e. if the coefficient a; is not taken into account in
(h * |a|?); as is done in [A]), the convolution in the denominator can be seen as
a prediction of the energy of each coefficient from the energies of its neighbours.
The division will be a different way of discounting this prediction from the input.

In fact, the prediction stage in the non-linear normalisation model is similar
to the prediction scheme that has been successfully used in [I5] to exploit the
conditional probabilities of the transform coefficients to encode them in a more
efficient way. This suggest that the normalisation could certainly remove the
statistical correlation in r. It has been shown that the parameters in eq. [0l can
be optimised to maximise the decorrelation of the output [6]. However, it is
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important to remark that the parameters used in this work are empirical, i.e.
not optimised to improve the decorrelation in a given training set.

5 Quasi-Analytical Inversion of the Normalisation

Problem Statement. The prediction kernel which makes the model useful for
statistical decorrelation also makes it non-invertible. As h is not diagonal, each
response 1; is coupled with every transform coefficient a;. Therefore, the inver-
sion of R gives rise to a set of non-linear equations which have no analytical
solution. There are, of course, a number of numerical methods based on the ite-
rative search of a solution, @, which minimises some distance, |r— R(@)|, but their
convergence is not guaranteed and may be very sensitive to the initialisation.

Quasi-analytical Inversion. In spite of the non-invertible nature of R, around
a point a4, the inverse function can be locally written as,

a=R(ro+dr)=a,+VR (r,)-dr (8)

where the unknown gradient of the inverse function can be be related to the
(known) gradient of the response (see fig.[d). This differential equation represents
the local evolution of the inverse response. If it is integrable, it can be used to
propagate the solution from any initial conditions, (r4,a,), up to the desired
point 7. The computation of the inverse can be analytically formulated as a
definite integral. As this integral must be numerically solved we have called this
method quasi-analytical in contrast to the numerical search-based methods.

Convergence of the Solution. The existence and uniqueness of the solution
of an initial value problem is guaranteed if the gradient to be integrated is boun-
ded [16]. In our case, VR(a) should not vanish anywhere. The small linear term

Fig. 3. Alternative DPCM schemes. Fig. [Bla shows the classical substractive DPCM.
Fig. Blb shows the d%'lvz'sive DPCM interpretation o£ the non-linear normalisation.

R'(r) R(a)
(Unknown) Ty - - (Known)

@

a=a+VR'(r,)dr =
au‘
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Fig. 4. Inverse computation integrating the increments of the inverse function. In each
iteration, the unknown gradient is computed from the known response at that point.
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Fig. 5. Reconstruction errors of a tipical block (solid line) and a difficult block (dashed
line). The curves are the average over several initial conditions: the mean DCT, a 1/f
DCT and a flat DCT. The bars show the dispersion in the distortion due to the different
initial conditions. The differences below the dashdot line are visually negligible.

in the response avoids ensures a non-zero slope for every a. This guarantees that
the integration of eq. Blis possible and always gives the appropriate solution.
To test the speed and robustness of the inverse computation, the 16 x 16
DCT blocks of a set of 256 x 256 natural images were transformed according to
the non-linear normalisation and then inverted back integrating the eq. Rlwith a
4" order Runge-Kutta algorithm. The effect of the initialisation and the number
of integration steps was explored. Figure bl shows the DCT reconstruction error
as a function of the number of integration steps for two different blocks and
different initial conditions. The inversion experiments show the following trends:

— The solution is always found. The experiments confirm the theoretical
existence and uniqueness result: the proposed method achieves the appro-
priate inverse (with negligible distortion), for every response block, no matter
the initial conditions with a reasonably small number of integration steps.

— Speed. Most of the responses (~90% in the explored images) appropriately
converge to its corresponding DCT in 3-6 integration steps from very dif-
ferent initial conditions. The solid line in fig. [l is an example of this kind
of blocks. However, we found that ~10% of the DCT blocks, usually cor-
responding to sharp spectrum regions, require a more accurate integration.
The dashed line represents the worst-behaved block of the training set.

— Robustness. The inverse does not substantially depend on the initial condi-
tions, but on the nature of the block (see fig.[H), so the algorithm is insensitive
to the initialisation. Generic 1/f or flat spectra give quite good results.

6 Decorrelation Experiments

The decorrelation properties of the proposed representation were compared with
the standard PCA representation (i.e. the domain of eigenfunctions of I') and
with the domain of eigenfunctions of W, which will be referred to as Perceptual
Principal Component Analysis (PPCA). The local DCT which is the best fixed-
basis approximation to PCA analysis for natural images [2] was also explored.
The local DCT is also interesting because it is the first linear stage, T', in the
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Fig. 6. Covariance (upper row) and perceptual metric (lower row) in different domains.
The qualitative meaning of the elements of these matrices depends on how the 2D do-
mains are scanned to construct the 1D feature vectors. The matrices in the spatial
domain are the result of a raster scanning. A JPEG-like zigzag scanning has been used
in the DCT and the other transform domains because the coefficients of similar fre-
quency are grouped together. According to this, the frequency meaning of the diagonal
elements of W, and I in these domains progressively increases from zero to the Nyquist
frequency. For the sake of clarity only the upper-left 176x 176 submatrix is shown. The
frequency values of the displayed elements in the DCT domain range from 0 to 26 cpd.

proposed representation, (T, R), so it is useful to assess the benefits of the non-
linear normalisation R. The spatial representation has been included as a useful
example of highly correlated domain.

The PCA representation was computed from the covariance around the aver-
age of a set of natural images. The PPCA was computed from the average per-
ceptual metric, originally defined over the DCT blocks of the training set. The
values of I', W, ns and 75, in the different domains are shown in figure @l

The highly non-diagonal nature of W in the spatial domain is an additional
argument against the spatial domain representation that complements the clas-
sical reasonings exclusively based on the non-diagonal nature of the covariance
matrix [TJ2]. The DCT domain certainly reduces the statistical and perceptual
interactions by an order of magnitude with regard to the spatial domain but it
still doesn’t completely remove none of them. The linear approaches that only
take into account one of the relations, PCA or PPCA, are not acceptable because,
in these cases, the other relation is increased in the resulting representation.

The proposed representation, DCT plus non-linear normalisation transform,
gives the best results. On one hand, it achieves a complete perceptual decor-
relation for every input because it works with local (not average) metrics. In
this sense the perceptual decorrelation is better than in the PPCA or any other
PCA-like approach such as [I0]. On the other hand, the statistical interaction is
also highly reduced, almost an order of magnitude with regard to the DCT.
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7 Concluding Remarks

In this paper the perceptual correlation between the features of an image repre-
sentation has been formalised through the perceptual metric matrix in the same
way as the statistical correlation is described by the covariance matrix.

We have presented a perceptually inspired image representation that simulta-
neously reduces the statistical and perceptual correlation between the features.
It first uses a linear local frequency transform and after a non-linear energy nor-
malisation is applied to the coefficients. The good statistical behaviour of this
perceptual model relies on its divisive-DPCM structure. The proposed repre-
sentation improves the decorrelation properties of a fixed basis representation
such as the DCT without the basis storage problem of linear input-dependent
PCA-like transforms because an efficient method to invert it has been presented.

According to the results presented here, the non-linear mapping R may be
a very interesting second stage after the linear DCT or wavelet-like transforms
used in many image analysis applications [I7].
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