Abstract
We introduce a family of divergences between φ-probabilistic sets, with real supports. The supports are never unbounded to opposite sides. We start from weighted and percentiled dissimilarities between arbitrary unions of compact intervals of real numbers. As an application we model the problem of the recognition of a handshape as a metric problem between φ-probabilistic sets. The proposed family of divergences is a suitable solution to this problem of comparing one handshape prototype, a φ-probabilistic set, with one input handshape, a φ-fuzzy set.
Chapter PDF
Similar content being viewed by others
References
Bezdek, J.: Fuzzy models. What are they, and why? IEEE Transactions on Fuzzy Systems 1(1) (1993) 1–6
Zadeh, L. A.: Similarity relations and fuzzy orderings. Information Sciences 3(2) (1971) 177–200
Klir, G. J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall PTR, Upper Saddle River, New Jersey (1995)
Calot, G.: Cours de Statistique Descriptive. Dunod, Paris (1965)
Dubois, D., Prade, H.: A unifying view of comparison indices in a fuzzy set-theoretic framework. In: Yager, R. R. (ed.): Fuzzy Set and Possibility Theory. Recent Developments. Pergamon Press, New York (1982)
Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Mathware & Soft Computing 2 (1995) 71–84
Sambuc, R. Fonctions φ-Floues. Application á l’Aide au Diagnostic en Pathologie Thyroïdienne. PhD Thesis, Faculty of Medicine of Marseille (1975)
Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Academic Press, New York (1975)
Kaufmann, A.: Les Expertons. Hermes, Paris (1987)
Moreno J., León-Rojas, J. M., Silva, A.: Sistema de traducción automática del Lenguaje de Signos Español al Español oral. Novática 136 (1998) 60–64
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
León-Rojas, J.M., Moreno, J., Silva, A., Morales, M. (2000). A Family of Divergences between φ-Probabilistic Sets with Application to Handshape Recognition. In: Ferri, F.J., Iñesta, J.M., Amin, A., Pudil, P. (eds) Advances in Pattern Recognition. SSPR /SPR 2000. Lecture Notes in Computer Science, vol 1876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44522-6_80
Download citation
DOI: https://doi.org/10.1007/3-540-44522-6_80
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67946-2
Online ISBN: 978-3-540-44522-7
eBook Packages: Springer Book Archive