A Family of Divergences between #-Probabilistic
Sets with Application to Handshape Recognition

Juan M. Leén-Rojas', José Moreno?, Antonio Silva?, and Montaiia Morales?

1 University of Extremadura, Department of Mathematics,
Escuela Politécnica, 10071 Céceres, Spain
jmleon@unex.es
2 University of Extremadura, Computer Science Department,
Escuela Politécnica, 10071 Céceres, Spain
{josemore, agua}@unex.es
3 Ministery of Education and Culture, I. E. S. Agora,
Computer Science Department, 10005 Céceres, Spain
guideca@unex.es

Abstract. We introduce a family of divergences between @-probabilistic
sets, with real supports. The supports are never unbounded to opposite
sides. We start from weighted and percentiled dissimilarities between ar-
bitrary unions of compact intervals of real numbers. As an application
we model the problem of the recognition of a handshape as a metric
problem between ®-probabilistic sets. The proposed family of divergen-
ces is a suitable solution to this problem of comparing one handshape
prototype, a @-probabilistic set, with one input handshape, a ®-fuzzy
set.

1 Introduction

The purpose of this work is to introduce some horizontal divergences between
d-probabilistic sets, horizontal because they are defined from the dissimilarities
measured between their a-cuts. The vertical point of view is revised in §2] In
g3l we concentrate our efforts in the horizontal point of view. We assume the
normality of the fuzzy sets to ensure the non-voidness of all their a-cuts. As the
a-cuts of a normal fuzzy set with real support is a compact interval in IR, then
the first we need is to measure the dissimilarity between compact intervals in IR.
This is investigated in §3.0] where we motivate and propose several dissimilari-
ties, including one, recursively defined from the dissimilarities measured between
some of their subintervals. Following subsections comprise several examples of
applications. The extension of the proposed divergence measures to normal but
non convex sets is nearly trivial, starting from the corresponding definition of a
dissimilarity measure between finite unions of compact intervals in IR(cf. §3.3)).
In §34 we apply the former horizontal divergences (cf. §3:2) between probabi-
lity distributions. In §3.5] we apply the recursive schema (cf. §801) over @-fuzzy
numbers. A brief discussion about a possible mixed divergence is presented in
4. Lastly, in §5, we model the problem of the recognition of a handshape as a
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metric problem between @-probabilistic sets. The proposed family of divergences
is a suitable solution to this problem of comparing one handshape prototype, a
®-probabilistic sets, with one input handshape, a @-fuzzy set.

For later use we remember some definitions. Let D be a universal or reference
(crisp) set. A fuzzy set A over D can be identified with its membership function
(mf), A is always and only a function, from D into [0,1][I]. Given «a € [0,1],
the a-cut of A is the crisp set *A = {x : A(z) > a} and its levels set, A(A) =
{a € [0,1] : A(x) = a}. All the a-cuts of a given set A, form a decreasing
sequence of nested crisp sets, i. e., Vaj,as € [0,1], a1 < ag = “1A D *2A.
Every fuzzy set can uniquely be represented by the family of all its a-cuts. This
is usually referred to as a decomposition of the set [2]. In order to do that, let
consider, for each a € [0,1], the fuzzy set oA = o - *A, where *A represents
its characteristic function (viewed as an special membership function). Every
fuzzy set A, is the standard fuzzy union of all the sets 4 A, variying « in A(A)
[B]. The height of A is h(A) = sup{A(z) :  €D}. The support of A is the set
supp(A) = {x €D: A(x) > 0}. We call core of A its 1-cut, core(A) = {z €D:
A(x) = 1}. A is called normal if core(A) # @ (i. e., h(A)=1), and subnormal
otherwise. A is open left if lim,_, o, A(z) =1 and lim,_, - A(z) = 0; open right
if lim, oo A(z) = 0 and lim, o A(z) = 1; open if it is open left and right;
and closed if lim,_, o, A(z) = limg,_, o A(z) = 0. A is convez if Vay, ag € [0, 1],
ap > ay = “TAC *2A. A fuzzy number is every normal and convex fuzzy set
in the real line IR. At the sintactic level, probability density functions (pdf) may
be consider as fuzzy sets, exactly those which cardinality is one.

2 Vertical Approach

As a general procedure, we can measure the divergence between two real bo-
unded functions f and g, from D into [0, 1], measuring the local dissimilarities
at each point = of the common domain D, §(f(z),g(z)), and then define a
divergence D(f,g). To define this D, from the local dissimilarities, is to find
a way of aggregating all those local informations. Three ways seem to be ob-
vious: optimistically, Diy¢(f,g) = inf{d(f(z),g(x)) : = €D}, pessimistically,
Dgup(f,9) = sup{d(f(z),g(x)) : x €D}, or an averaged one, a kind of mean
between those extremal cases, Dint(f, 9) < Dayv(f,9) < Dsup(f,9)-

This Day(f,g) could be defined from a ¢-mean format [4]. Given a set of
n values X = {xy,...,2,}, if ¢ is a continuous and monotonic function in
[inf X, sup X], the p-mean of x1,... ,z, is defined as the value M, such that,

o (My) = Zci%@(l"i) (1)

Obviously, inf X < M, < sup X, and M, actually from [0, 1]'P! into [0, 1],
is a monotonic increasing function in all its arguments. If ¢; = 1/ |D|, for all 4,
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then we are looking for the solution M,{} of

¢ (Mp{0(f(2), () : x € D}) = |D‘ D v () 2)

xzeD

If ¢ (z) = 2P, M, is known as a generalized mean, that we denote og,

(@5 6 (1(@).9(e) 2 € DY’ = 7 37 (/). 9(@)))’ 3)

zED

and such that, in the countable infinite case, we should be in the space of sumable
series of power (3, and if 8 — oo, og = sup X. If §(x,y) = | — y| we recognize
the standardized family of discrete Minkowski distances, for 1 < p < oo, with

wo(f.9) = limyroc dp(f,9) = sup{| () — g(x)]| : @ €D}. It D= [a,8] and f and
g are continuous in D, then we can ‘add up’ all the local dissimilarities,

/ F(2) — g@)P da (4)

where if p = 1, the integral represents the total area between the curves.

3 Horizontal Approach

Dubois and Prade [5] proposed a fuzzy-valued comparison index between fuzzy
sets,

IC(A,B) = / a/IC(“A° B) (5)

defined from the values of the comparison index acting on their a-cuts. This index
assumes that the comparison between two fuzzy sets at high membership degrees,
needs to weight more than that with lower ones. The proposed divergences can
take into account this fact. We assume the normality of the fuzzy sets to ensure
the non-voidness of all their a-cuts. As the a-cuts of a normal fuzzy set with
real support is an interval, then the first we need is to measure the dissimilarity
between intervals.

3.1 Dissimilarity Measures between Intervals of Real Numbers

Let T = [ig,41] and J = [jo, j1] two compact intervals of real numbers. One
bijection that transform I into J is f(z) = ((jo — j1)x + 0j1 — %1J0)/ (o — 1),
Observe that f is a composition of an homothety and a translation, with ratios
(jo — j1)/(io — i1) and (i0j1 — ?1J0)/(i0 — i1), respectively. Without any loss of
generality, we can assume that I and J are subintervals of [0, 1]. This is because,
given a concrete working environment W, there exist a real number k, such
that all the possible intervals to compare, are subintervals of [—k, k]. Thus we
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can stantardize by range, 1/ supy,{d(ir, js)}, with r, s € {0, 1}, or this k can be
generalized to be an inaccessible real number (actual infinity), a real number too
large to be described in any floating point number system to be implemented
on a computer. Similar sign inaccessible real numbers are incomparable since
we cannot know which real number each of them represents. Then, without any
loss of generality, we can only work with subintervals of [0, 1], because by f, we
transform [—k, k] into [0, 1].

a-Percentage Points If X = [zg, 2] is a compact interval of real numbers, we
define the a-percentage point in X, as x(,) = (1 — a)zo + ax1, with a € [0,1].
Although the percentage points may be unequally spaced, we assume, first, that
for all & € ZZy, ®(a41) — T(a) is the same value, that is, the percentage points
are equally spaced. More general situations will be treated further.

One can think to compare I and J ’to the right’, measuring the distance
between iy and jp, but then, the dissimilarity will not be sensible to different
right queues, al-though it should be the right proceeding if the interval space is
{lz,1) : x € (0,1)} or if it is lateralized, i. e., if it is {[a,z) : € (a,1)}, with
fixed a, measuring a certain ’adecuation towards a’. The situation is similar if
comparing ’to the left’, between i; and j;. A first and usual way to mitigate
those disadvantages, is to use the following extension to intervals, of the family
of Minkowski standarized metrics,

_ 1 1/p
AP (1,9) = |5 (lio = Gl + lir = 1 ]") (6)

for 1 < p < oo, and (f(o%)(l, J) = max{|io — Jjol,|é1 — j1|}. Given I and J, if
lio — jo| = |ix — j1|, i. e., if the interval transformer f, defined above, is a
translation, then Jl(f) (I,J) = lig — Jo|, for all 1 < p < oo. There exists three
situations, completely different, for which &;,2)(1 ,J) should be the same. First,
if the interval transformer f, defined above, is ’only’ a translation; second, if f
is a contraction, and third, if f is a lateral dilation, being I and J concentric,
in the second case. As the metrics %2), only consider local dissimilarities at the
endpoints, they assign the same distance value to all the pairs of intervals with
equal endpoint-difference. But this does not correspond to which our natural
intuition should ever say. For example, if I represents a range request, and J
and K are such that J C I and K ¢ I, then d(I,J) should must be lower
than d(I, K). This is the case if I = [0,3], J = [1,2] and K = [1,4], but
J,(,z) (1,J) = Ci](?)(I,K) = 1. A first idea to correct it, is to consider also, the
dissimilarities between the mean points of the intervals,

1/p
- 1., . ) ) ) .
d;(;?’) (I,J) = 3 (lio = Jol? + li1/2 — jay2lP + lix — 41]P) (7)

One obvious reason is that, as I and J are concentrics (i1 = ji2), we
divide by a greater quantity, and then CZ[()S) (I,J) is lower. For the example
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above, d\(I,J) = 2/3 < dP(I,K) = dP(J,K) = 1y d¥(1,J) = 0.8615 <
NI, K) =1 < dP(J,K) = 1.201.

Modified Minkowski Dissimilarities In general, we reinforce the former
idea, with the extra information coming from all the local dissimilarities between
the corresponding a-percentage points. A first family of modified Minkowski
dissimilarities, is defined as

dip)(1,7) = (/ ’AI‘]-l—a(AIJ A”)‘ da>; ®)

where 1 < p < oo and Aé’“} =i, — jx (k € {0,1}). The case p = 2 is widely
studied by Bertoluzza, Corral and Salas [6]. If p = oo,

disoy(I,J) = sup {li(a) = J(a)|}- 9)
ael0,1]

With respect to the former observations, if f is a translation, the dissimila-
rities are the same, but in the other two cases, the dissimilarities d(,(Z,.J) are
monotonic increasing with respect to p, towards d(.c)(I, J).

Weighted Dissimilarities A weighted dissimilarity between the intervals could
also be defined from a ¢-mean format (cf. eqn. (I))). In the finite case we define
it as the solution #d (1, J) of

N
@ (Pdzy(1,0)) = Z % (i) = J(]) (10)

with 25:1 w(a) = 1. If ¢ (x) = 2P, another modified Minkowski dissimilarity,
that if 1 < p < oo,

N i
() = <Zw(a) li(a) —J'<a>\p> (11)

a=1

In the continuous case, given I and J, if w is a normalized Lebesgue weight
measure on ([0, 1],8([0,1])), and if ¢ (’Aé"] +a (A{’J - Aé"]) D is w-integrable,

we define a dissimilarity between I and J as the solution df (I, J) of the integral
equation

et = [ (Al +a (Al - A7) dsto) (12)

with Al7 =i —ji (k € {0,1}), provided the integral exists and ¢ is continuous
and monotonic at its domain. This last expresion depends on the definition of
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w, and there no exists a general solution to the integral proposed. If £(«) is the
Radon-Nykodim derivate of the measure w, that is £(a) = dw(a)/da, then

etz = [ e (jab o (A - A )ae ()

(a, B)-Percentage Intervals If X = [z,z5] is a compact interval of real
numbers, we define the (a, 3)-percentage interval of X as I, g) = [ac(a), x(l,ﬁ)}.
Then we consider the following free-form approximation of ¢ in [0, 1],

M
f0) =Y axn, (@) (14)
k=1

where I79q) = {I1,...,In} is a finite collection of disjoint (c, 3)-percentage
subintervals of [0, 1], assuming that there are r and s, such that 1 < r, s < M
and 4,9 = 0 and i, = 1. x7 is the characteristic function of I, whose area, with
respect to a measure p, is u(I), for every interval that contains I. The special
case X[q,q] 18 6(z — a), the Dirac J-distribution. Observe that it is necessary a
normalization

M
> eep(Iy) =1 (15)
k=1

to include the Minkowski metris d, as special cases.

Thus, we measure the dissimilarity between I and J, from the dissimilarities
between some of their («, 3)-percentage subintervals, proceeding with these in a
similar manner, and son on. We have then, a recursive schema

Ny
eurt (2701 (St w Sern)) = D0 oy (a2 (S5,87,))  (16)
r=1

for k, from 1 to N1, assuming that Eivzyl v¥*t!t = 1. The end of the recursion
is reached in P+ 1 steps, assumed that the computation of df% (Sf,., S3,.), for
all 7 =1,..., Np, is defined from its a-percentage points, i. e., from I, 1_q),
as in eqn. (I0).The functions ¢ and ¢, are continuous and monotonic at the
corresponding intervals.

For example, we can modify eqn. (@) in the following way: let be I = [ig, i1],
J = [jo,jrls Sio = lio,io +er0), STy = lin —era,ia), S{o = [jo,jo + €s0);
SIJJ = [j1 — €1, j1], then a possible dissimilarity is defined as

1

=(2) L@ P (7™ e
4, (1,0) = [2 (4,7 (s10:870)) + (4, (81 1.811)) )} (17)
Observe that when we consider a finite collection I't = {I1, ..., Ip} of (o, §)-

percentage subintervals of an interval I = [ig,41], we assume that there exist r
and s, such that 1 <r,s < M and 4,0 = ¢ and is,1 = 41.
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3.2 The Horizontal Divergence

In order to define a divergence between two sets A and B, we have only to
aggregate the local dissimilarities obtained in the former sections. Using a -
mean format (cf. eqn. ([)), if A and B are (closed) fuzzy numbers and d,, (A, B) is
a dissimilarity measure between the a-cuts of A and B, we propose as divergence
the possible solution Dy, 4(A, B) of

o (Dy.o(A, B)) = / o (da(A, B)) d(a) (18)

where ¢ is a Lebesgue measurable function, ¢ (d, (A, B)) is ¢-integrable and the
integral above exists.

3.3 Horizontal Divergence between ‘Climbing’ Fuzzy Sets

An instance of non-convex but normal fuzzy sets is that we call climbing fuzzy
set, a normal fuzzy set such that all the reference points where it reaches a local
maximum belongs to its core. Because of the normality, all the a-cuts of A are
non void. If A has real support, each of its a-cuts is a finite union of disjoint
compact intervals of real numbers, X=I1 UI,U...UI,=[i10,1,1]Ui2,0, i2,1]U...U
[in,0,n,1]. We can easily extend the dissimilarities defined above to this case. For
example, the definition of the a-percentage point in X is x(q) = ix,0+ L —Sk_1,
where Sk_l/L S « S Sk/L, and Lh = ih71 77;}170 5 S() = 0, Sk = L1+L2+...+Lk
and L = 5,,.

3.4 Horizontal Divergence between Probability Distributions

As a probability distribution is a special case of open right fuzzy set, with height
1, we can define an horizontal divergence between two probability distributions P
and @, from the former dissimilarity measure between their a-cuts. If arg P(«)
and arg Q(a) are real numbers, then the a-cuts are *P = [arg P(a),c0) and
“Q = [argQ(a),00). If we note Mye(P,Q; ) = max (arg P(a),arg Q(«)) and
Marg (P, Q; &) = min (arg P(«),arg Q(«)), then the horizontal divergence bet-
ween P and @ at level a is do (P, Q) = Mavg (P, Q; &) — Mg (P, Q; ). If arg P(a)
is an interval of real numbers, then *P = [min arg P(«), 00), and so in order to
compute d, (P, Q) it is necessary to use a dissimilarity between intervals of real
numbers.

A divergence can be defined in a similar way to compare two open left fuzzy
sets. In the case of and open fuzzy set, we assume that its support is not R (any
a-cut is non void), and then *A = (—oo, min arg A(«)] U [max arg A(«), +00).

3.5 Horizontal Divergence between ®#-Fuzzy Numbers

Another example of interest refers to @-fuzzy sets. In order to express a greater
uncertainty, Sambuc [7] proposed the concept of @-fuzzy set (or interval-valued
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fuzzy set), with its membership function, A :D— 2001 ig defined as A(z) =
[A(x), A(z)], an interval defined by a lower and an upper membership function.
We say that a &-fuzzy set A is a @-fuzzy number if A is a fuzzy number. If instead
of single intervals, we consider a finite union of them, it is known as P-fuzzy set
[8]. For example, denoting fio)(x) = min f(z) and fu)(z) = max f(z), if A
is a @-fuzzy number, then its a-cut is a union of three compact intervals *A =
[arg o) A(x), arg o) A(x)]U[arg ) A(z), arg(y) A(z)|Ularg () A(x), arg(,) A(x)]. We
can use the former recursive schema to define a divergence between two @-fuzzy
numbers, weighting more the middle subinterval [argy A(z), arg(;) A(x)] (the
least uncertain one) than the ending intervals.

4 Mixed Approach

In the general problem of comparing two fuzzy sets, several situations can be
considered. If they have a common support, or the intersection between both
supports is large, perhaps the most natural procedure is to measure the dis-
similarity between them vertically, but if they have disjoint supports, doing it
horizontally seems to be more natural. If the intersection of the supports is not
so large, perhaps we have to think in a mixed approach. In such cases, we must
aggregate the horizontal and the vertical divergences. For example, if we are in-
teresting in compare two @-fuzzy numbers, we can do it whether horizontally or
whether vertically, using some interval dissimilarity. Observe that any vertically
approach only consider intervals in [0, 1].

5 Application to Handshape Recognition

Our objective here is to model the problem of the recognition of a handshape as a
metric problem between @-probabilistic sets, i. e., a $-fuzzy set such that A and
A are probability functions [9], as part of a wider study of Spanish Sign Language
[10]. The data adquisition is made with two mechanical devices, a sensored glove
CyberGlove™ (which measures flexion and abduction angles, thumb rotation,
palm arch, wrist pitch and wrist yaw) and a 3D sensor Polhemus Isotrack” .
We call the observed sensor values, the clues. In order to make easier the
exposition, let assume that the unique sensor devices are those of flexion and
that the angles are normalized into [0, 1], where 1 means the quality ‘completely
flexed’. Then each clue refers to this quality. Thus, our reference set is the finite
set of predicates D = {s; = MPJ(t), sa = IJ(t), s3 = MPJ(i), s4 = PIJ(Q),
s = MPJ(m), s¢ = PI1J(m), s = MPJ(r), ss = PIJ(r), s = MPJ(p), s10 =
PIJ(p)}, where the constants are t=thumb, i=index, m=middle, r=ring, and
p=pinkie, and the functions are M PJ=MetacarpoPhalangeal Joint, I J=Inter-
phalangeal Joint, and P=Proximal. The predicates mean, for instance, s; =
MPJ(r) = ‘ring’s MPJ angle is completely flexed’. For example, a néive appro-
ximation to the ASL (American Sign Language) handshape ‘i’ (pinkie extended
and the rest completely flexed) is the fuzzy set, in Zadeh’s notation Z}il /i,
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where ag and aq¢ are approximately 0, and the others are approximately 1.
Observe that because of the anatomical configuration of the human hand and
the characteristics of ‘i’ to be recognized, although flexed, it is enough that the
thumb is close to the index and the thumb-tip is below the knuckle line.

In general, the handshapes of a sign language have not to be so precise.
Fingers do not have to achieve an exact position but an interval of possible
positions, for example, signing ‘w’ in ASL, index, middle and ring are extended,
but the angle between the possible directions (viewing the fingers as vectors
from knuckles) has not to be exactly zero: differences of about 10-15 or even 20
degrees are oftenly interpreted as ‘w’. Thus, a fuzzy set seems to be a suitable
representation of the uncertainty for a handshape.

Assume that, in general, we have three finite sets Q, S and &, of handshapes,
sensor devices and experts signers, respectively. Given a handshape ¢ to be
learned by the system, for every expert e € &, ¢ is defined as a set of |S|
probability distributions Dg. = {Pyes : s € S}. Once performed ¢ by all of
the experts, ¢ is defined as an overset {D, . : e € £} of subsets of probability
distributions. Observe that if we suppose a finite range for each sensor device (a
quantization of [0, 1]), the distributions in D, . are discretes.

Observe also that given an expert e, and a sensor device s, we have a pro-
bability mass function p. ;. We have assigned, heuristically, to each expert e, a
confidence level ae € [0, 1], so the a, - 100% more probable executions of ¢ are
the only accepted (we call the significance ae-cut of pe s, and we denote it *<p, ,
the set that comprises all of them, given e and s).Thus, it seems reasonable to
estimate the handshape prototype signed by a given expert e, as the @-fuzzy set

Ge =) [s(e),5(e)]/s (19)

seS

where the sample range of the sensor device s, given that the expert e has
signed the handshape ¢, is estimated as [s(e),3(e)], with s(e) = min{s, : i =
1...,n(e,q) As; € *pes} and S(e) =max{s; :i=1,... ,n(e,q) AS; € *pc s}
and n(e,q) is the number of times that e has signed ¢ (the sample size for e
and ¢). Thus, given a set of experts &, once performed all the handshapes by all
of them, we have |Q| classes of handshapes, all of them with || elements, the
former &-fuzzy sets qe.

Each execution of a handshape by a signer (the input pattern to the system)
is a plain fuzzy set of observed values {o(s) : s € S8} from the sensor devices,
although really, because of possible errors in the measure process, we are only
sure that the true value belongs to some interval [o(s) — A, o(s) + Ag], where
Ag is an estimation of the error associated to s. Then, each input pattern could
be represented as a @-fuzzy set.

At this point, the recorded patterns and the input one are represented by
@-fuzzy sets. The problem of the classification of the input can be solved by
classical thecniques as ‘nearest neighbours’, evaluating dissimilarities between
the input and all the pattern in a class, for the different classes. We can use, for
example, the former recursive proposal as in §3.5.
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5.1 Handshapes as #-Probabilistic Sets

For each class of recorded patterns (@-fuzzy sets) we define a prototype as a
@-probabilistic set. Given a probabilistic space (£2,B, P) and (£2.,B.) a space
of characteristics, we can define a ®-probabilistic set A by a pair of mappings
A A:Dx 2 (., where A, A(z,.) are measurables in (B, B.), for all x € D.

Given ¢, we define a prototype as the @-probabilistic set ¢,q :Sx 2 — (2,
with 2 = {{[s(e),5(e)]: s €S} :e€ &} and 2. = [0,1]. Thus, the problem
of the recognition of a handshape is modeled as a metric problem between @-
probabilistic sets. The family of divergences defined above is a suitable solution
to the problem of comparing one handshape prototype, a @-probabilistic set, with
one input handshape, a @-fuzzy set. A &-fuzzy set is a P-probabilistic set such
that all lower and upper probabilities are Dirac deltas. Given two ®-probabilistic
sets A and B, we can calculate a divergence between them in several ways, for
example, we can compute

0151 {0 (D(A(5). B(s)), D(A(5). B(s))) : s € S} (20)

where D is a divergence between probability distributions and O\s; and O, are
aggregation operators of arities |S| and 2.

An alternative is based upon the definition of expected set of a @-probabilistic
set. Given a @-probabilistic set A, we can average over {2, obtaining its lower
and upper mean-value membership functions. The ezpected set (a P-fuzzy set)
of A is defined as

B(4) = [BA)(s), BA)(s)] = [ | Aswyre). [ A(s,mdP(w)} (21)

Given two @-probabilistic sets A and B, we can demote them to their expec-
ted @-fuzzy sets and compute

Ois|{D(E(A)(s), E(B)(s)) : s € S} (22)

where D is a dissimilarity between intervals of real numbers.

References

1. Bezdek, J.: Fuzzy models. What are they, and why? IEEE Transactions on Fuzzy
Systems 1(1) (1993) 1-6

2. Zadeh, L. A.: Similarity relations and fuzzy orderings. Information Sciences 3(2)
(1971) 177-200

3. Klir, G. J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Pren-
tice Hall PTR, Upper Saddle River, New Jersey (1995)

4. Calot, G.: Cours de Statistique Descriptive. Dunod, Paris (1965)

5. Dubois, D., Prade, H.: A unifying view of comparison indices in a fuzzy set-
theoretic framework. In: Yager, R. R. (ed.): Fuzzy Set and Possibility Theory.
Recent Developments. Pergamon Press, New York (1982)



A Family of Divergences between ®-Probabilistic Sets 787

Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy
numbers. Mathware & Soft Computing 2 (1995) 71-84

. Sambuc, R. Fonctions ®@-Floues. Application a 1’Aide au Diagnostic en Pathologie

Thyroidienne. PhD Thesis, Faculty of Medicine of Marseille (1975)

Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Academic Press, New
York (1975)

Kaufmann, A.: Les Expertons. Hermes, Paris (1987)

. Moreno J., Leén-Rojas, J. M., Silva, A.: Sistema de traduccién automaética del

Lenguaje de Signos Espafiol al Espaniol oral. Novética 136 (1998) 60-64



	Introduction
	Vertical Approach
	Horizontal Approach
	Dissimilarity Measures between Intervals of Real Numbers
	The Horizontal Divergence
	Horizontal Divergence between `Climbing' Fuzzy Sets
	Horizontal Divergence between Probability Distributions
	Horizontal Divergence between $Phi $-Fuzzy Numbers

	Mixed Approach
	Application to Handshape Recognition
	Handshapes as $Phi $-Probabilistic Sets


