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Abstract. In pattern recognition systems, Chow’s rule is commonly used to
reach a trade-off between error and reject probabilities. In this paper, we
investigate the effects of estimate errors affecting the a posteriori probabilities
on the optimality of Chow’s rule. We show that the optimal error-reject trade-
off is not provided by Chow’s rule if the a posteriori probabilities are affected
by errors. The use of multiple reject thresholds related to the data classes is then
proposed. The authors have proved in another work that the reject rule based on
such thresholds provides a better error-reject trade-off than in Chow’s rule.
Reported results on the classification of multisensor remote-sensing images
point out the advantages of the proposed reject rule.

1   Introduction

In statistical pattern recognition, the probability that a given pattern, characterized by

a feature vector x, belongs to the i-th class, in a N-class problem, is provided by the a

posteriori probability P(wi|x) through the Bayes formula:

  

P wi | x( )=
p x | w

i( )P w
i( )

p x( )
i = 1,K,N  ,

(1)

where p(x|wi) is the conditional probability density function for x in the i-th class,

P(wi) is the a priori probability of occurrence of the i-th class, and p(x) is the
probability density function for x:

p x( ) = p x | wi( )P w i( )
i=1
N

∑  . (2)

A classification algorithm is aimed to subdivide the feature space into N decision

regions Di, i = 1,…,N, so that the patterns of the class wi belong to the region Di.
According to the Bayes theory, the decision regions are defined to maximize the

following probability of correct recognition, commonly named “accuracy” of the

classifier:

Accuracy= P correct( )= p x | w i( )P wi( )dx
D

i
∫i =1

N

∑  . (3)
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To this end, each pattern x must be assigned to the class for which the P(w
i
|x) is

maximum. This is the so called Bayes decision rule. The classifier that maximizes the

above correct classification probability is named “optimal Bayes classifier”. On the

analogy of equation 3, it is easy to see that the classifier error probability can be
computed as follows:

P err( ) = p x | w j( )P w j( )dxj =1
j „i

N∑
D

i
∫i =1

N∑  , (4)

where P(correct)+P(err)=1. The minimum of the above error probability can be

reached by the Bayes rule and it is named Bayes error.

Theoretically speaking, an error probability lower than Bayes error can be obtained

using the so called “reject option”. Namely, the patterns that are the most likely to be

wrongly classified are “rejected”, that is, they are not classified. Typically, they are

then handled by more sophisticated procedures (e.g., a manual classification process
is performed). In real applications, the aim of reject option is to safeguard against

excessive errors in order to obtain the accuracy required by the end-user of the pattern

recognition system. However, handling high reject rates is usually too time-

consuming for application purposes. In addition, correct classifications may also be

converted into rejects as the rejection rate increases. Therefore, a trade-off between

error and reject is mandatory. The formulation of the best error-reject trade-off and

the related optimal reject rule was given by Chow [1]. According to Chow’s rule, a

pattern x is rejected if the maximum of the a posteriori probabilities is lower than a

given threshold value T˛ [0,1]:

  

max
k =1,K, N

P w k | x( )= P w i | x( )< T  . (5)

On the other hand, the pattern x is “accepted” and assigned to the class wi, if:

  

max
k =1,K, N

P w k | x( )= P w i | x( )‡ T  . (6)

The rationale of Chow’s reject rule becomes evident if one observes that

max
i

P(wi | x)  is the conditional probability of classifying a given pattern x correctly.

Therefore, for a given threshold T and the related reject rate, the patterns with the
highest probabilities to be wrongly classified are rejected. A detailed proof of the

optimality of Chow’s rule can be found in [4]. It is worth noting that, under the

assumption that the a posteriori probabilities are exactly known, Chow proved that his

decision rule provides the optimal error-reject trade-off [1].

It is easy to see that a classifier using reject option subdivides the feature space into

N+1 decision regions D1,...,DN,D0, such that patterns belonging to D0 are rejected, and

patterns belonging to Di are assigned to the class wi. The reject region D0 is
determined according to equation 5. Equation 6 is used for defining the decision

regions D1,...,DN. Using rejection option it makes sense to distinguish between

rejected and accepted patterns. It is then useful to define the reject and acceptance

probabilities. The probability that a pattern is rejected is computed as follows:

P reject( )= p(x)dx
D
0

∫  . (7)
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On the other hand, the probability that a pattern is accepted is:

P accept( ) = 1- P reject( ) = p x( )dx
D

i

∫i=1
N∑ = p x | w j( )P w j( )dxj =

N∑
D

i

∫i=1
N∑  . (8)

It is worth noting that only the accepted patterns are classified. Therefore,

P(correct)+P(err)<1. It is also easy to see that P(accept)=P(correct)+P(err), and

P(correct)+P(err)+P(reject)=1.

For classifiers using rejection option the accuracy is defined as the conditional

probability that a pattern is correctly classified given that it has been accepted:

Accuracy= P correct | accept( )=
P correct, accept( )

P accept( )  .

Finally, according to equation 8 and taking into account that
P(correct,accept)=P(correct) (i.e., only the accepted patterns are correctly or wrongly

classified), we can write the following equation:

Accuracy= P correct | accept( )=
P correct( )

P correct( )+ P err( )
 .

(9)

As previously pointed out, Chow’s reject rule provides the optimal trade-off

between error and reject only if the a posteriori probabilities of the data classes are

exactly known. However, in real applications, such assumption is not satisfied since

the available a posteriori probabilities are affected by estimate errors. Therefore,

approaches different from Chow’s rule have been proposed to handle the error-reject
trade-off [2,3]. However, to the best of our knowledge, no work theoretically

addressed the problem of the optimal error-reject trade-off when a posteriori

probabilities are affected by errors. In particular, the reject rules proposed in the

literature were not theoretically compared with Chow’s one.

In this paper, we investigate the effects of estimate errors affecting the a posteriori

probabilities on the optimality of Chow’s rule (Section 2). We show that the optimal

error-reject trade-off is not provided by Chow’s rule when the a posteriori

probabilities are affected by errors. In section 3 the use of class-related reject

thresholds is proposed. The authors have proved in [6] that the reject rule based on

such thresholds provides a better error-reject trade-off than in Chow’s rule. Section 4

reports results on the classification of multisensor remote-sensing images that point

out the advantages of the proposed reject rule. Conclusions are drawn in Section 5.

2   Reject Option with Class-related Thresholds

As previously told, Chow’s reject rule provides the optimal trade-off between error

and reject, only if the posterior probabilities of the data classes are exactly known.
This fact can be illustrated by an example. Figure 1 shows a simple one-dimensional

classification task with two data classes w1 and w2 characterized by Gaussian
distributions.
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x

P(w
1
|x)

ˆ P w1 | x( ) ˆ P w2 | x( )

ˆ D 0

Fig. 1. A one-dimensional classification task with two data classes w1 and w2 characterized by

Gaussian distributions. The application of Chow’s rule with reject threshold T to the “true” and
“estimated” a posteriori probabilities is shown.

The terms P(wi|x) and ˆ P wi | x( ), i=1,2, indicate the “true” and “estimated” a

posteriori probabilities, respectively. We hypothesized that estimate errors are
negligible when the two classes are “well separated”, that is, when the difference

between the two a posteriori probabilities is large. Differently, significant errors affect

the estimated probabilities in the range of feature values where the two classes are

“overlapped”. Other researchers share this assumption, which is in agreement with

real experiments [5]. The optimal decision and reject regions provided by Chow’s rule

applied to the true probabilities are indicated by the terms D1, D2 and D0. The term T

indicates the reject threshold used in Chow’s rule. Analogously, the terms ˆ D 1 , ˆ D 2 ,

and ˆ D 0 stand for the decision and reject regions provided by Chow’s rule applied to

the estimated probabilities. It is easy to see that Chow’s rule applied to the estimated

probabilities never provides the optimal decision and reject regions D1, D2 and D0. No
value of the threshold T allows to obtain these regions. Therefore, the example in

Figure 1 points out that Chow’s rule cannot provide the optimal error-reject trade-off

when the a posteriori probabilities are affected by errors. The authors proved the

general validity of such conclusion. For the sake of brevity, the reader interested in

such proof is referred to [6].

However, a careful analysis of Figure 1 suggests a different approach from Chow’s

rule for obtaining the optimal error-reject trade-off, even if the a posteriori

probabilities are affected by errors. First of all, we can observe that the estimated

decision regions ˆ D 1  and ˆ D 2  differ from the optimal ones in the ranges ( ˆ D 1 - D1)  and

(D2 -

ˆ D 2) . Accordingly, non-optimal decisions are taken within these ranges by

Chow’s rule applied to the estimated probabilities. In particular, the patterns

belonging to the range ( ˆ D 1 - D1)  are erroneously accepted, since the a posteriori

probability ˆ P w1 | x( ) takes higher values than the true ones within this range.

However, it is easy to see that such patterns would be correctly rejected using a

threshold value T1 higher than T. Analogously, the patterns belonging to the range

(D2 -

ˆ D 2)  are erroneously rejected, since the a posteriori probability ˆ P w2 | x( ) takes
lower values than the true ones within this range. Such patterns would be correctly

accepted using a threshold value T2 lower than T.
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The above analysis suggests the use of multiple reject thresholds to obtain the

optimal error-reject trade-off, even if the a posteriori probabilities are affected by

errors. In particular, different thresholds for the different data classes should be used.

Figure 2 shows the use of two different reject thresholds T1 and T2 for the

classification task described in Figure 1.

x

P(w
1
|x)

ˆ P w1 | x( )
ˆ P w

2
| x( )

ˆ D 0 = D0
ˆ D 1 = D1

ˆ D 2 = D2

P(w
2
|x)

T

T2

T1

Fig. 2. Two different reject thresholds T1 and T2 are applied to the estimated class-posterior

probabilities of the classification task in Figure 1. Such thresholds allow to obtain the optimal
reject region corresponding to Chow’s rule applied to the true class-posterior probabilities.

It is easy to see that such thresholds applied to the estimated probabilities allow to
obtain the optimal reject region corresponding to the single-threshold Chow’s rule

applied to the true probabilities. It is worth remarking that Chow’s rule applied to the

estimated probabilities is not able to provide this optimal reject region. Therefore,

under the assumption that the a posteriori probabilities are affected by errors, the use

of multiple thresholds can provide a better error-reject trade-off than Chow’s one.

The general validity of the above conclusion has been proved in [6]. In particular,

under the assumption that the a posteriori probabilities are affected by significant

errors, we have proved that, for any reject rate R, such values of the thresholds

T1,...,TN exist, that the corresponding classifier’s accuracy A(T1,...,TN) is equal or

higher than the accuracy A(T) provided by Chow’s rule.

Therefore, we propose the following reject rule for a classification task with N data

classes that are characterized by “estimated” posterior probabilities ˆ P wi | x( ),
i=1,...,N. A pattern x is rejected if:

  

max
k =1,K, N

ˆ P w k | x( )= ˆ P w i | x( )< Ti  , (10)

while x is accepted and assigned to the class wi, if:

  

max
k =1,K, N

ˆ P w k | x( )= ˆ P w i | x( )‡ Ti  . (11)

The above thresholds T1,...,TN are named “class-related reject thresholds” (CRTs),

and take on values in the range [0,1]. Accordingly, the proposed rule is named CRT

rule. It is worth noting that, analogously to Chow’s rule, in real applications, the

values of the CRTs have to be estimated according to the classification task at hand.

In the next section, we describe the basic concepts of an algorithm devoted to estimate
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such values. For the sake of brevity, we refer the reader interested in more details

about this algorithm to [6].

3   An Algorithm for Estimating Class-related Reject Thresholds

In [6] the authors have proved that the following proposition is true:

"R  $ T1,T2, ...,TN :   A(T1,T2,...,TN ) ‡ A(T)  . (12)

Namely, we have proved that, for any given reject rate R, and the corresponding
Chow’s threshold T, values of the CRT thresholds exist such that the accuracy

provided by the CRT rule is equal or higher than in Chow’s rule. It is easy to see that

such CRT values can be estimated by evaluating the maximum of the function

A(T1,...,TN) for a given reject rate R. Accordingly, the CRT values that satisfy

equation 12 are estimated by solving the following maximization problem:

  

max

T1,K,TN

A T1,K,TN( )

R T
1
,K,T

N( )£ R
MAX

 
 
 

  
 .

(13)

It is worth noting that the inequality constraint in the above equation is aimed to

take into account the error-reject requirements of real pattern recognition applications.

The end-user of a pattern recognition system usually wishes to obtain the highest

classification accuracy and a reject rate below a fixed threshold RMAX.

According to the CRT rule, the accuracy and the reject probabilities A(T1,...,TN)
and R(T1,...,TN) are functions of the CRTs. For given values of the CRTs, such

probabilities can be estimated according to equations 7 and 9 using a validation set.

Since the functions A(T1,...,TN) and R(T1,...,TN) are computed using a finite data set,

they take on a finite number of values in the range [0,1]. Therefore, equation 13

corresponds to a constrained maximization problem, where the “target” and the

“constraint” functions A(T1,...,TN) and R(T1,...,TN) are discrete-valued functions of

continuous variables. Unfortunately, to the best of our knowledge, no algorithm

reported in literature fits well the characteristics of the above maximization problem.

Accordingly, we have developed a specially designed algorithm to solve it. First of

all, our algorithm takes into account that R(T1,...,TN) is an increasing function of the

variables T1,...,TN, that is, the number of rejected patterns cannot decrease for
increasing values of the CRTs. In addition, we assume that A(T1,...,TN) is an

increasing function of T1,...,TN. This assumption is often verified in the experiments.

According to this assumption, the basic idea of our algorithm is to solve equation 13

iteratively, starting from CRT values that provide a reject rate equal to zero (i.e.,

Ti≤1/N, i=1,..,N), and varying such values in order to increase the function

A(T1,...,TN). At each step, each threshold Ti is increased according to the equation

Ti+kDt, where Dt is a positive constant, and k is an integer varying between 1 and

kMAX. Then the variations of accuracy DA and reject DR due to such changes are

evaluated. The changes that provide the maximum positive value of DA/DR, and do
not make to exceed the reject threshold RMAX, are selected to generate the next CRT
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values. The algorithm stops when it is not possible to increase A(T1,...,TN) while

keeping R(T1,...,TN)≤RMAX. It is worth noting that the proposed algorithm does not

guarantee to find the optimal solution of equation 13. Neverthless, experimental

results reported in the next section show that it affords CRT values that provide a

better error-reject trade-off than in Chow’s rule.

4   Experimental Results

The data set used for our experiments consists of a set of multisensor remote-sensing

images related to an agricultural area near the village of Feltwell (UK). We selected

10944 pixels belonging to five agricultural classes (i.e., sugar beets, stubble, bare soil,

potatoes, carrots), and randomly subdivided them into a training set (5124 pixels) and
a test set (5820 pixels). Each pixel was characterized by a fifteen-element feature

vector containing the brightness values in the six optical bands, and over the nine

radar channels considered. More details about the selected data set can be found in

[7,8].

Two different classifiers have been used in our experiments: a k-nearest neighbors (k-

nn) classifier and a multi-layer perceptron (MLP) neural network. For the k-nn

classifier, a value of the “k” parameter of twenty-one was used. The MLP network

had fifteen input units and five output units, as the numbers of input features and data

classes, respectively. Fifteen hidden neurons were used.
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Fig. 3. The accuracy-rejection trade-offs of the k-nn classifier using the CRT and Chow’s rules
are represented on the A-R plane for values of the rejection rate ranging from 0% to 20%.
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Fig. 4. The accuracy-rejection trade-offs of the MLP neural network using the CRT and
Chow’s rules are represented on the A-R plane for values of the rejection rate ranging from 0%
to 20%.

According to the algorithm described in Section 2, test data were used to estimate

the values of the CRTs and of Chow’s reject threshold. Values of the Dt and kMAX
parameters equal to 0.001 and 200, respectively, were adopted. The CRT and Chow’s

rules were compared in the so-called accuracy-reject plane (A-R plane), introduced in

[4]. In the A-R plane, the accuracy-reject trade-offs provided by a given reject rule are
described by the curve A(R) connecting the points that represent the accuracy values

for different rejection rates. A range of reject rates from 0% to 20% was considered.

This range is usually the most significant for application purposes.

Figure 3 shows the accuracy-reject trade-offs provided by the k-nn classifier using

the CRT and Chow’s rules. The results are related to the test set and they are shown in

the A-R plane. It is worth noting that, for any value of reject rate, the accuracy

provided by the CRT rule is higher that in Chow’s rule. Accordingly, we can say that

the CRT reject rule provides a better error-reject trade-off than in Chow’s rule. Figure

4 shows the results related to the MLP neural network. It is easy to see that

conclusions similar to the ones of the experiment with the k-nn classifier can be

drawn.

5   Conclusions

In this paper, we addressed the problem of the optimality of Chow’s reject rule when

the a posteriori probabilities are affected by estimate errors. We showed that Chow’s
rule cannot provide the optimal error-reject trade-off if significant estimate errors are

present. We then proposed the use of class-related reject thresholds. The authors have
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proved in [6] that the related reject rule provides a better error-reject trade-off than in

Chow’s rule. Reported experimental results confirmed the proposed theory. Finally, it

is worth noting that the use of class-related reject thresholds was previously proposed

for different purposes by Yau and Manry [3]. They have shown that such multiple

thresholds allow to equalize the error and reject probabilities for different data classes.
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