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Abstract. Statecharts [9] are widely used for the requirements specifi-
cation of reactive systems. In this paper, we present a framework for the
automatic generation of layouts of statechart diagrams. Our framework
is based on several techniques that include hierarchical drawing, labeling,
and floorplanning, designed to work in a cooperative environment. The-
refore, the resulting drawings enjoy several important properties: they
emphasize the natural hierarchical decomposition of states into substa-
tes; they have a low number of edge crossings; they have good aspect
ratio; and require a small area. We have implemented our framework
and obtained drawings for several statechart examples. The preliminary
drawings are very encouraging.

1 Introduction

Statecharts [9] is a graphical notation widely used for the requirements speci-
fication of reactive systems. Because of their hierarchical property, statecharts
are prime candidates for visualization. Nice and intuitive drawings of statecharts
would be invaluable aids to software engineers who would like to check the cor-
rectness of their design visually. In this paper, we study the problem of visuali-
zing statecharts and present an algorithmic framework for producing clear and
intuitive drawings.

Several visualization tools for reactive system specification and design are
available in the market [10,19,18,26]. Eventhough these tools are helpful in orga-
nizing a designer’s thoughts, they are mostly sophisticated graphical editors, and
therefore are severely inadequate for the modeling of complex reactive systems.
For example, the Rational Rose tool [21] provides a feature to layout UML [3]
statechart diagrams. Figure 1 shows an example of a statechart after the Ra-
tional Rose layout feature is applied. We notice that transition labels overlap;
transition edges overlap with state boxes; and there is a large number of unne-
cessary edge bends and edge crossings. Figure 5 in Section 5 shows a drawing of
the same diagram using our algorithmic framework.
? Research supported in part by Sandia National Labs and by the Texas Advanced

Research Program under grant number 009741-040.

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 139–149, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 1. An example of a drawing of a Statechart generated by Rational Rose (drawing
rotated by 90 degrees due to space limitations).

A comprehensive approach to hierarchical drawings of directed graphs is de-
scribed in Sugiyama et al. [25]. Several extensions and variations of this approach
have been introduced in the literature. A comprehensive survey is given in [1]. A
first extension that takes into consideration cycles and dummy nodes for large
edges (i.e., edges that span more that one level) was introduced by Rowe et
al. [22]. Gansner et al. [8,7] provide a technique to draw directed graphs using
a simplex-based algorithm that assigns vertices to layers; at the same time, they
provide an extension to the basic algorithm of Sugiyama et al. by drawing edge-
bends as curves. A divide-and conquer approach is described by Messinger et al.
[17] to improve the layout-time performance for large graphs consisting of se-
veral hundreds of vertices. More recently, a combination of the algorithm of [25]
with incremental-orthogonal drawing techniques was proposed by Seemann [23]
to automatically generate a layout of UML class diagrams. In [11], Harel and
Yashchin discuss an algorithm for drawing edgeless highgraph-like structures.
The problem of drawing clustered graphs without crossings was studied in [5,6].
Most of the research on the Edge Labeling Problem (ELP) has been done on la-
beling graphs with fixed geometry, such as geographical and technical maps [14].
Kakoulis and Tollis [13] present an algorithm for the ELP problem that can be
applied to hierarchical drawings with fixed geometry. Gansner et al. [7] use a
simple approach to solve the ELP problem for hierarchical drawings: they assign
labels to the middle position of edge lines. However, they assume that edge la-
bels are small and do not consider the possibility of overlap with other drawing
components.

In this paper, we present a framework for the automatic generation of lay-
outs of statechart diagrams. Our framework is based on several techniques that
include hierarchical drawing, labeling, and floorplanning. Our algorithm for hier-



An Algorithmic Framework for Visualizing Statecharts 141

archical drawings is a variant of the algorithm by Sugiyama et al. [25] that is
tailored to statecharts. Since edge labels are crucial in describing transitions in
statecharts, we have developed edge labeling techniques. Previously, edge labe-
ling techniques were described for graph drawings, and geographical and tech-
nical maps with fixed geometry [14,13]. In our work, we address the problem of
graph drawings with flexible geometry. Finally, in order to reduce the area and
improve the aspect ratio of the statechart drawings we apply floorplanning tech-
niques inspired by the ones used for the area minimization of VLSI layouts [24,
16]. In our approach, the hierarchical, labeling, and floorplanning techniques are
designed to work in a cooperative environment. Therefore, the resulting drawings
enjoy several properties: they emphasize the natural hierarchical decomposition
of states into substates; they have a low number of edge crossings; and require
a small area. We have implemented our framework and have obtained drawings
for several statechart examples. The preliminary drawings are very encouraging.

2 Statecharts

Statecharts [9] are extended finite state machines used to describe control as-
pects of reactive systems. They provide mechanisms to describe synchronization
and concurrency, and manage exponential explosion of states by using state de-
composition. In the statechart notation, a state is denoted by a box labeled in
the upper left corner. Directed arcs are used to denote transitions between sta-
tes. A transition label has the form E[C]/A, where E is a boolean combination
of external stimuli; C is a boolean combination of conditions; and A is an ac-
tion that is executed when the transition is active, E occurs, and C is true. A
superstate is a state that can be used to aggregate sets of states with the same
transitions. A state can be repeatedly decomposed into substates in two ways,
through the OR or the AND decomposition. The OR decomposition reflects the
hierarchical structure of a state machine and is represented by encapsulation.
The AND decomposition reflects concurrency of independent state machines and
is represented by splitting a box with lines.

In our approach, a statechart is treated as a graph. Nodes 1 in the graph
correspond to states, and arcs correspond to transitions between states. A node
includes the following information: its name; its width and height; the coor-
dinates of its origin point; a pointer to its parent; the list of its children; its
decomposition type (e.g., AND, OR or leaf); the list of incoming arcs; the list of
outgoing arcs; a list of attributes; and finally its aliases.

The underlying structure of a statechart is an AND/OR tree where the leaves
are called basic states. We call this structure a decomposition tree. The root
of a decomposition tree corresponds to the system state; leaves correspond to
atomic states. Each object in the tree can be decomposed through the AND
or OR decomposition. In the remainder of the paper, we assume that relevant
information is extracted from a textual description of requirements, and stored
in a decomposition tree.
1 In the remainder of this paper we will use the words node and object interchangeably.
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3 Automatic Layout of Statecharts

In this section, we describe our statechart drawing algorithm. Our algorithm
proceeds as follows: first, the decomposition tree is traversed in order to deter-
mine the dimensions (and origin point) of every node in a recursive manner. If
a node v is a leaf then a drawing procedure is called. This procedure produces
a labeled rectangle and returns the dimensions of the rectangle. If v is an AND
node then a recursive algorithm constructs the drawings of each child of v and
places the drawings next to each other. If v is an OR node then a recursive
algorithm constructs the drawings of v’s children, then assigns each child to a
specific layer. For the sake of simplicity, we generate our drawings horizontally,
from left to right. A similar approach can be used to generate vertical drawings.

An AND node reflects concurrency of independent state machines. The child-
ren of an AND node are drawn as adjacent rectangles. The height of an AND
node is equal to the maximum height of its children’s rectangles; its width is
equal to the sum of the widths of its children’s rectangles. This algorithm is
very simple and thus not very efficient in terms of area. As the size of each node
depends on the recursive drawings of the substate nodes that are nested in it,
and these drawings depend also on the size of the edge labels, it becomes clear
that drawing an AND node should be done more carefully. More area-efficient
drawings can be obtained by applying techniques similar to floorplanning as used
in VLSI layout [15,24,27]. We will revisit this topic in Section 5.

An OR node reflects the decomposition of states into substates. The sub-
states of an OR node are drawn as rectangles. The drawing (and hence the
dimensions of the enclosing rectangle) of an OR node is obtained by recursi-
vely performing a hierarchical drawing algorithm [2] on the node and each of
its substates. The algorithm that constructs the drawing of an OR node has
the following characteristics: (i) substates are drawn recursively; (ii) substates
are assigned to layers by using a modified version of Sugiyama’s algorithm [25]
(procedure realDimensionHierarchyDrawing).

Procedure realDimensionHierarchyDrawing (see Figure 2) consists of two
steps:

1. We construct a hierarchy of substates by treating each substate as a point
by calling procedure hierarchyDrawing, which proceeds as follows:
a) We assign the node that corresponds to the initial state to the first layer.
b) We apply a depth-first search to identify those edges that form graph-

cycles; then we temporarily remove them.
c) Once the cycles are removed, we assign every node v to a specific layer

which is determined by the length of a longest path from the start node
to v. At this stage, every node is assigned an x coordinate.

d) We add dummy vertices to deal with edges whose initial and final states
are not in adjacent layers.

e) Finally, we apply a node ordering procedure whose purpose is to mi-
nimize edge crossings within each layer. This ordering provides the y
coordinate for each node.
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realDimensionHierarchyDrawing(ObjectList o.children)
Begin

hierarchyDrawing(o.children);
hierarchy.height = 0;
hierarchy.width = 0;
for i = 1 to depth(hierarchyDrawing of o.children) do
begin do

1. layer[i].largestWidth = largest width among the objects in layer[i];
2. if (layer[i+1] ≤ depth(hierarchyDrawing of o.children)) then add

layer[i].largestWidth as an offset to the origin x of every object in
layer[i+1];

3. layer[i].height = summation of each object’s height at layer[i];
4. if (hierarchy.height < layer[i].height) then hierarchy.height =

layer[i].height;
5. hierarchy.width = hierarchy.width + layer[i].largestWidth;
6. Increase the origin y of each object in layer[i] in order to deal with

the height of each object and avoid overlapping;

end do;
End

Fig. 2. Procedure that generates the final hierarchy of an OR node.

2. We incorporate into the hierarchy the dimensions (i.e., height and width) of
each node in the drawing, as described in Figure 2. The resulting hierarchy
is used to determine the height and width of the parent object/state, as well
as the coordinates of the origin of the object’s rectangle.

Most of the steps of the algorithm have linear time-complexity with respect to
the number of edges of the graph. The last step of procedure hierarchyDrawing
attempts to beautify the obtained drawing by reducing the number of edge
crossings. Our approach is based on the general layer by layer sweep paradigm
[2]. The time-complexity of this step of the algorithm depends on the number
of vertices that exist on each layer. If layer L contains |L| nodes, then the time
required the algorithm is O(|L|2). Clearly, the total time for this step depends
upon the distribution of nodes into layers. Any step of the above framework
can be replaced by any algorithm that achieves results that are acceptable for
the next step. Due to space limitations, we cannot provide more details in this
paper. For more details please see [4].

4 Labeling

In the labeling literature, it is common to distinguish between node label pla-
cement (NLP) and edge label placement (ELP). In the Statecharts [9] notation,
NLP depends primarily on the node type. Hence, the label placement for nodes
in statecharts is rather simple: if a node is a leaf, then the label size will deter-
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Fig. 3. Edge label placement in statecharts: (a) label on a single line, (b) one label
component per line, (c) label with fixed length, (d) edge label placement.

mine the node size. If a node is an AND or an OR, then the label is placed in
the top left corner of the enclosing rectangle.

Now we discuss our solution to the ELP problem for statecharts. In carto-
graphy, the placement of an edge label must satisfy the following criteria [12,
28,13]:

1. A label cannot overlap with any other graphical component except with its
associated edge.

2. The placement of a label has to ensure that it is identified with just one edge
in the drawing. Therefore it must be very close to its associated edge.

3. Each label must be placed in the best possible position among all acceptable
positions.

In the statecharts notation, an edge label consists of three components: event,
condition and action (see Figure 3(a)). In order to satisfy the labeling criteria
discussed above we have defined the following steps:

1. We fix the maximum length of the label to a constant, and we write the
transition’s three components (i.e., events, conditions and actions) on three
separate lines (see Figure 3(b)). If the size of a component is greater than
the maximum length of the label, then we write it on several lines (see
Figure 3(c)).

2. At the beginning of the execution of the drawing algorithm (see Section 3),
we assign labels to sublayers (see Figure 3(d)).

3. We traverse the hierarchy from left to right, considering two adjacent layers
L1 and L2 at a time (see Figure 3(d)). For each vertex a in L1, we identify
the set of edges Ea between a and the vertices in L2. We order Ea in such a
way that potential label crossings are removed.

The time complexity of this step is linear with respect to the number of edges
in the graph.



An Algorithmic Framework for Visualizing Statecharts 145

5 Floorplanning Heuristics

Because of the representation of statecharts, it is possible that certain AND
nodes of the decomposition tree are very large in one dimension or the other.
Recall that our algorithm places all the subnodes (vertically) next to each other.
The height of the resulting drawing of an AND node is equal to the maximum
of the heights of the subnodes and the width is equal to the sum of the widths
of the subnodes. This implies that a bad combination of two subnode rectangles
(one with large height and one with large width) will result in a drawing of the
AND node that occupies a very large area. This is clearly undesirable. Addi-
tionally, the aspect ratio of the drawing, another important aesthetic criterion,
is not controllable. We tackle this problem by applying a technique similar to
the one used for the minimization of VLSI chip areas [15,24,27], namely flo-
orplanning. Floorplanning partitions a floor rectangle into floorplans using line
segments called slices. Floorplans are combined in such a way that the enclosing
rectangle covers a minimum area. A floorplan is slicing whenever the floorplan is
an atomic rectangle or there exists slice that divides the rectangle into two. The
floorplanning problem has an efficient solution when the floorplan is slicing [24,
16].

Although one could apply the slicing floorplanning technique for drawing
the AND nodes [24], due to the special representation of statecharts, we have
simplified this technique. We apply the slicing floorplanning concept to derive a
set of heuristics that can be applied to statecharts. To this effect, we define the
following drawing criteria for statecharts:

Fig. 4. AND-OR combination: (a) AND/OR decomposition tree, (b) AND vertical sli-
cing with OR horizontal layering, (c) AND horizontal slicing with OR vertical layering.

– Leaves are used to represent atomic states whose size depends solely on
their labels. Since labels are usually written horizontally (for readability
purposes), we will draw leaves horizontally.
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– The AND decomposition reflects concurrency, and is represented by splitting
an AND-state box into a number of concurrent substates. Since one of the
most important aesthetic criteria in graph drawing is symmetry [20], we
choose to slice AND-state boxes either horizontally or vertically.

– OR states can be drawn in a hierarchical fashion using either a horizontal
or a vertical layering depending on the slicing type of the parent node (i.e.,
horizontal / vertical slicing).

Our goal is to generate drawings that use the horizontal and vertical dimen-
sions in a uniform way, in order to optimize the drawing area. To this effect we
define several heuristics: The AND/OR heuristic applies to the case where the
parent is an AND node and the children are OR nodes (see Figure 4(a)). There
are two cases:

1. The parent node (AND) is sliced vertically. Then the children nodes (OR)
are drawn on horizontal layers (see Figure 4(b)). In this case, the height of
the parent object is the height of the highest child node; and the total width
of the parent is the sum of the children’s widths.

2. The parent node (AND) is sliced horizontally. Then the children nodes (OR)
are drawn on vertical layers (see Figure 4(c)). In this case the height of the
parent node is the sum of children’s heights; and the width of the parent
node is the width of the widest child.

Heuristics that handle the other cases (OR/AND, AND/AND, and OR/OR)
are defined similarly, and are omitted due to space limitation. For more details
please see [4].

Figure 5 shows the statecharts diagram after we applied our improvement
drawing techniques (i.e., edge-crossing and edge-bend reduction, edge labeling,
and floorplaning) to the diagram of Figure 1. We observe that both, the hori-
zontal and vertical dimensions, grow in a uniform manner; edges do not overlap
with any other drawing component; every edge crossing has been removed; and
the number of edge bends has been reduced considerably.

6 Conclusions and Experimental Results

In this paper we presented an algorithmic framework for the automatic genera-
tion of layouts of statechart diagrams. Our framework is based on hierarchical
drawing, labeling, and floorplanning techniques. Clearly any algorithm used for
any step can be replaced with an improved algorithm thus resulting in an impro-
ved tool. We implemented a tool using the algorithms described in this paper,
and ran the tool on four statechart examples. We generated drawings using first,
the basic version (without the optimized algorithms), then the optimized ver-
sion. Due to space limitations, the drawings produced by our tool are available
at http://www.utdallas.edu/∼rmili/GD2000/. Our results are described in Ta-
ble 1. We notice that, after the application of the optimized algorithms, (1)
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Fig. 5. Same statechart as in Figure 1, generated by our drawing algorithm with opti-
mization techniques.

edge-crossings are completely eliminated; (2) the number of edge-bends is consi-
derably reduced; (3) the drawings enjoy a good aspect ratio. This optimization
improves considerably the readability of the diagrams. Therefore, it constitutes
an invaluable tool to the specifier who will shift his/her focus from organizing
the mental or physical structure of the requirements to its analysis.

Table 1. Comparison of four examples of statecharts drawn by our algorithms

Aesthetic Drawing 1 Drawing 2 Drawing 3 Drawing 4
Criteria Without With Without With Without With Without With

Improve Improve Improve Improve Improve Improve Improve Improve

Edges 33 0 23 0 22 0 34 0
Crossings
Edge 53 19 39 18 24 18 70 32
Bends
Width 1,953 875 2,733 1,029 1,794 861 2,820 1,632
Height 548 1,259 735 1,722 736 1,593 651 1,424
W/H 3.5227 0.695 3.718 0.5975 2.4375 0.54 4.33 1.44
Ratio
Area 1,059,284 1,102,884 2,008,755 1,771,938 1,320,384 1,371,573 1,835,820 2,323,968
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