An Experimental Comparison of
Orthogonal Compaction Algorithms*
(Extended Abstract)

Gunnar W. Klau', Karsten Klein?, and Petra Mutzel®

! Technische Universitit Wien, Austria, gunnar@ads . tuwien.ac.at
2 MPI fiir Informatik, Saarbriicken, Germany, karsten@mpi-sb.mpg.de
3 Technische Universitit Wien, Austria, mitzel@ads.tuwien.ac.at

Abstract. We present an experimental study in which we compare the
state-of-the-art methods for compacting orthogonal graph layouts. Given
the shape of a planar orthogonal drawing, the task is to place the vertices
and the bends on grid points so that the total area or the total edge
length is minimised. We compare four constructive heuristics based on
rectangular dissection and on turn-regularity, also in combination with
two improvement heuristics based on longest paths and network flows,
and an exact method which is able to compute provable optimal drawings
of minimum total edge length.

We provide a performance evaluation in terms of quality and running
time. The test data consists of two test-suites already used in previous
experimental research. In order to get hard instances, we randomly ge-
nerated an additional set of planar graphs.

1 Introduction

Orthogonal graph drawing is getting increasing attention from industry because
of its numerous applications, e.g., in database design, software engineering and
many more. For many of these applications, the topology-shape-metrics approach
leads to the best results. Here, a first phase (planarisation) determines the to-
pology of the drawing. The aim is to generate a drawing with a small number of
edge crossings, e.g., by computing a large planar subgraph and carefully reins-
erting the removed edges. Then, the crossings are replaced by artificial vertices
resulting in a planar (also called planarised) graph. A second phase determines
the shape of the final layout. This phase is often restricted to planar orthogo-
nal drawings (orthogonalisation). A widely accepted optimisation criterion is to
minimise the number of bends without changing the topology. Finally, the third
phase (compaction) deals with computing the metrics of the layout. Here, the
optimisation problem is to compute a layout of minimum area or with minimum
total edge length.

* This work is partially supported by the Bundesministerium fiir Bildung, Wissen-
schaft, Forschung und Technologie (No. 03-MU7MP1-4).

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 37-51l 2001.
© Springer-Verlag Berlin Heidelberg 2001

38 G.W. Klau, K. Klein, and P. Mutzel

Although Batini et al. suggested the topology-shape-metrics approach
already in 1984, it took some years until the approach was getting popular. The
reason for this is twofold: On the one hand, expertise in planarity algorithms,
combinatorial embeddings, planar graph drawing algorithms and combinatorial
optimisation is necessary in order to deal with the upcoming combinatorial graph
problems—most of them are NP-hard, including the compaction problem we are
dealing with in this paper. On the other hand, it is time consuming to implement
the approach, since many different kinds of algorithms are needed.

Recently, a lot of research has been done to solve many of the upcoming
problems. Major improvements have been made concerning various aspects of
the planarisation phase, e.g., [BI4[5], the orthogonalisation phase, e.g., [6I7I8/9],
and the compaction phase [IOJIT]. Moreover, today there exist some software
libraries containing the topology-shape-metrics approach [I2|T3[T4TH]. Often it
is implemented in a modular form, so that it is easy to experiment with.

This enables experimental comparisons between various algorithms in order
to understand their influence on the final drawing. Already in [I6], the impact
of choosing two different algorithms for the orthogonalisation phase has been
analysed and compared to two different orthogonal drawing methods. The ex-
perimental results showed that the topology-shape-metrics approach is superior
to other orthogonal methods. Experimental comparisons for various hierarchical
drawing methods appeared in [T7T8] and for force-directed methods in [T9].

In [TT], we have suggested an exact method for compacting orthogonal dra-
wings. Our implementation is able to solve instances of up to 1,000 vertices to
provable optimality in short computation time. Independently, Bridgeman et al.
came up with a new heuristics for the compaction problem in [I0]. We were
interested how the behaviour of the various compaction heuristics are related to
the optimal solutions. Moreover, we wanted to find the best strategies among
the heuristic methods. These questions led to the present computational study.

We compare the following constructive methods for orthogonal compaction:
the original dissection method introduced in [20] based on longest paths, the
same method based on network flows, two methods based on turn-regularity
described in [10], and the exact method suggested in [T1]. An orthogonal drawing
can be improved by using iteratively one-dimensional compaction methods based
on longest paths or network flows. We have tested all possible combinations of
construction and improvement heuristics.

Section [introduces the orthogonal compaction problem formally. The com-
paction methods under evaluation are described in Section Bl We present com-
putational experiments on various benchmark sets of graphs in Section @l The
paper closes with our conclusions in Section

2 The Compaction Problem

In this section, we present a precise formulation of the compaction problem we
are considering in this paper. We assume familiarity with planarity and basic
graph theory.

An Experimental Comparison of Orthogonal Compaction Algorithms 39

Let G = (V,E) be a 4-planar graph, i.e., a planar graph whose maximum
vertex degree does not exceed four. We associate with each undirected edge
(v,w) € E two directed half-edges (v, w) and (w,v). A planar representation P
for G describes the topology of a drawing for G in the plane by specifying the
set of faces F' as lists of counter-clockwise ordered half-edges and one explicit
external face f.

An orthogonal representation H for GG is an extension of P and describes,
in addition to the topology, the shape of a drawing for G by specifying the
bends in the edges and angles inside the faces. It is an equivalence class of
planar orthogonal drawings. Two orthogonal drawings belong to the same class
if one can be obtained from the other by rotating the drawing and modifying
the lengths of the horizontal and vertical edge segments without changing the
angles formed by them.

We call an orthogonal representation simple if its number of bends is zero.
In the following, we always assume that an orthogonal representation is simple
by treating bends as artificial vertices. A simple orthogonal representation H
is defined by giving for each half-edge in P the angle it forms with its cyclic
successor in the same face. A planar orthogonal grid drawing for a 4-planar graph
maps vertices and bends to distinct grid points and edge segments to horizontal
or vertical non-crossing non-empty line segments in the grid which connect the
images of their endpoints. A drawing for a simple orthogonal representation H is
a planar orthogonal drawing for the corresponding 4-planar graph which respects
the shape coded in H. As with representations, we call orthogonal drawings
simple if they do not contain bends.

Problem (Two-dimensional compaction problem in orthogonal graph
drawing). Given a simple orthogonal representation H for a 4-planar graph,
find a simple planar orthogonal drawing for H of minimum total edge length.

Patrignani shows in [2I] that the compaction problem—and the related pro-
blems which ask for minimum area and minimum maximum edge length—are
NP-complete.

3 Orthogonal Compaction Algorithms

In this section we briefly introduce the compaction algorithms under evaluation.
We first describe the constructive techniques which produce a drawing for a given
orthogonal representation H. The key idea behind these methods is to transform
H into an auxiliary representation H' by introducing artificial edges and vertices
and to find a drawing for H' in polynomial time. Removing the artificial vertices
and edges in the auxiliary drawing leads to a drawing for H. Unfortunately,
in the general case, these drawings can be far away from an optimal solution.
We therefore present techniques which operate directly on drawings in order
to improve the total edge length and area. Finally, we summarise an approach

based on an integer linear program (ILP) to compute an optimal drawing for
H.

40 G.W. Klau, K. Klein, and P. Mutzel

(a) (b)

Fig. 1. The dissection method. (a) Original representation H, (b) Transformed repre-
sentation H'. Dashed lines and empty vertices represent artificial edges and vertices

3.1 Constructive Heuristics

Tamassia mentions the first and still most common method to produce an auxi-
liary representation H' which is easier to deal with in his ground-breaking paper
on bend-minimisation [20]. He introduces the dissection method which consists
of decomposing each internal face of the given simple orthogonal representation
H into a set of faces each of which has rectangular shape by introducing artificial
vertices and edges. Figure[T]illustrates this method with an example—please note
that the method works at the level of the representation; the coordinates have
not yet been assigned. This process can be done in O(n) time where n denotes
the number of vertices in H. In the resulting orthogonal representation H’, all
interior faces have rectangular shape. Of course, the artificial vertices and edges
impose additional constraints on the geometry which may lead to suboptimal
total edge length and area in the resulting drawing.

Bridgeman et al. present in another, more sophisticated, approach to
produce a polynomial-time compactable auxiliary representation H'. Using the
concept of turn-regularity, they manage to introduce a significantly lower number
of artificial vertices and edges. Let f be a face in H. With each occurrence of
a vertex v on the boundary of f, one or two corners are associated with v,
depending on the angle internal to f between the edges preceding and following v.
For each ordered pair of corners (¢;, ¢;) associated with vertices of f, let p(c;, ¢;)
be the difference of the left and right turns along the boundary of f between ¢;
(included) and ¢; (excluded). The value p(c;, ¢j) defines the net angle between
the edges preceding the vertices associated with ¢; and ¢;. Two corners at angles
of at least 270 degrees are called kitty corners if p(c;,¢;) = 2 or p(c;,¢;) = 2.
A face of an orthogonal representation is turn-regular if it has no kitty corners.
Observe that rectangular faces are turn-regular. A representation is called turn-
regular, if all its faces are turn-regular. We describe two methods from [I0] to
transform H into a turn-regular representation H'.

An Experimental Comparison of Orthogonal Compaction Algorithms 41

(a) (b)

Fig. 2. The two turn-regularity-based dissection methods

The first heuristics uses the rectangular dissection method described above,
but only for faces in H which are not turn-regular (see Fig. B(a)). The second
heuristics recursively adds an artificial edge between each pair of kitty corners
until the face has been decomposed into smaller turn-regular, but not necessarily
rectangular, faces. The direction of the inserted edge (vertical or horizontal) is
chosen randomly. See Fig. [2(b).

Two methods can be used to compute drawings for an orthogonal represen-
tation H’ in which all internal faces have rectangular shape; variants of these
methods generate a drawing if H’ is general turn-regular. The methods, lon-
gest path-based compaction and flow-based compaction, are one-dimensional
methods, i.e., they assign horizontal and vertical coordinates separately—we
therefore restrict our description to the computation of z-coordinates, the same
techniques can be used for the y-coordinates.

We construct a directed graph D, as follows: Each maximally connected
vertical path in H’ corresponds to a node in D,—for a vertex v in H' we denote
by vert(v) the unique node in D, it belongs to. For each horizontal edge e =
(v,w) in H' we assume that it is directed from left to right and insert an arc
(vert(v), vert(w)) into D,.. Figure[3(a) shows this construction for the orthogonal
representation from Fig. [[[(b). Generally, we will refer to the pair of graphs in
which nodes correspond to maximal horizontal and vertical paths and arcs to
distance relations between these paths as constraint graphs.

Topologically sorting the nodes in D, by computing longest paths and setting
the z-coordinate of each vertex in H’ to the topological number of vert(v) leads
to a feasible assignment of z-coordinates; y-coordinates result from a similar
computation in the directed graph D,. This approach, illustrated in Fig. B(a),
yields a drawing for H’ with minimum width, height and area, but in general
not minimum edge length. The running time is O(n).

A more elaborate method which also minimises the total edge length for H’
is the flow-based compaction. It assigns topological numbers for the nodes in D,

42 G.W. Klau, K. Klein, and P. Mutzel

2
5

(a)

Fig. 3. (a) The graph D in the longest path-based compaction method. (b) The dual
network Dj in the flow-based compaction method. Unconnected arcs are linked with
an undisplayed node corresponding to the external face

by computing a minimum cost flow in its dual graph D. Flow through an arc a
in D} determines the length of the edge corresponding to the primal arc in D,,
thus @ has a lower bound of one, infinite capacity and unit cost. See Fig. Bl(b)
for an example of the method which has a running time of O(n”/*logn). If H'
is turn-regular but not all faces have rectangular shape, the construction of the
flow network is more complicated. In this case additional arcs which correspond
to so-called saturating edges connecting switches in two oriented copies of H’
have to be included in the flow network. For details see [I0].

3.2 Improvement Heuristics

The constructive heuristics have a serious drawback: Though removing the ar-
tificial objects in the drawing for H' leads to a feasible drawing for H it is in
general not the best one. Fortunately, variants of the longest path-based and
flow-based compaction methods can be used to operate directly on the layout
(this has also been used in vLSI-design; see, e.g., [22]).

Unlike above, where the arcs in D, correspond to edges in H', we insert arcs
based on the visibility properties in the layout. If a maximally connected vertical
path “sees” another one to its right, we insert an arc between the corresponding
nodes in D,. This will preserve the one-dimensional relative positions. Topo-
logically sorting D, or computing a flow in D} results in new z-coordinates.
Alternating the direction of the compaction and performing another step results
in an iterative process. However, at each step the decisions are purely local, and
compaction in one direction may prevent greater progress in the other direction.
Furthermore, the layout may be blocked in both dimensions, but still be far away
from an optimal solution.

An Experimental Comparison of Orthogonal Compaction Algorithms 43

3.3 Optimal Compaction

In [I1], Klau and Mutzel present an ILP-based approach to solve instances of the
two-dimensional compaction problem to optimality. It is based on a characteri-
sation of the set of feasible solutions in terms of paths in the pair of constraint
graphs. Given a pair of constraint graphs in which only the relative positions
known from the shape of H are present (shape graphs), the compaction problem
can be seen as optimising over the set of certain extensions of these graphs. The
quality that such an extension must comply is based on geometric properties
and establishes a direct link between the two graphs D, and D,. The new com-
binatorial task can be naturally formulated as an ILP which can be solved using
a branch-and-cut algorithm. If there is only one possible extension of the given
shape graphs, the authors show that their algorithm runs in polynomial time.
Even if the algorithm does not find an optimal solution, it will report a feasible
solution with a quality guarantee.

4 Computational Experiments

In this section we present a selection of our computational results for the compa-
rison of compaction techniques. We concentrate on the—in our opinion—most
interesting and usable experiments. We provide the full data at [23].

Experimental Settings. Each of the compaction strategies introduced in Sect.[3 is
available as a module inside the AGD library (see [13]). Many heuristics rely on
flow computations: In all modules we use the LEDA-function for this task. Our
implementation of the ILP-based method uses CPLEX, an ABACUS-version is
available. Here, we set a time limit of 15 minutes CPU time and return the upper
and lower bound.

We test the implementations of the constructive heuristics from Sect.[3-1]both
stand-alone and in combination with implementations of the two improvement
heuristics from Sect. [3:2] Additionally, we test the implementation of the ILP-
based algorithm. We run the implementations of the 13 resulting compaction
techniques on a Sun Enterprise 450 with 1.1 GB main memory and two 400 MHz-
CPUs and refer to them using the following scheme: We call the implementations
of the constructive heuristics LP, FL, T1 and T2, corresponding to the rectangular
dissection method with longest path compaction and with flow compaction and
the two variants of turn-regularity-based dissection with flow compaction. If
we apply an improvement heuristics, we append either LP or FL. We call the
implementation of the ILP-based approach opT. Figure [shows the output of
some of the methods for an example.

For our experiments, we use three different groups of graphs which can roug-
hly be divided in easy instances, practical instances and hard instances. Graphs
which are relatively easy to compact and which have already been used in [10] are
4-planar biconnected graphs. We use a set of 500 graphs with 10 to 100 vertices.
The set of more than 11,000 practical instances has been introduced in [I6] and
has since then become a widely used test-suite in experimental graph drawing.

44 G.W. Klau, K. Klein, and P. Mutzel

Additionally, we generated 540 hard instances for the compaction problem with a
graph generator in the LEDA library: To generate a planar graph with n vertices,
the generator chooses n segments whose endpoints have random coordinates of
the form z/K, where K is the smallest power of two greater or equal to n, and x
is a random integer in [0, ..., K —1]. It then constructs the arrangement defined
by the segments and keeps the n nodes with the smallest xz-coordinates. Finally,
it adds edges to make the graph connected. We call this test-suite quasi-trees
because large subgraphs of the resulting graphs are trees. In [11], quasi-trees
have shown to be hard instances of the compaction problem; they have many
fundamentally different drawings which makes the compaction task difficult. We
transform each test graph G into an instance of the two-dimensional compaction
problem in the following way:

1. We compute a planarised graph G’ using the planarisation method in the
AGD library. Note that the number of vertices in G’ equals the number
of vertices in G plus the number of crossings. We then compute a planar
embedding of G’.

2. We run the transformation phase of the Giotto algorithm [2]. The phase
creates an auxiliary 4-planar graph G/; by replacing vertices of degree greater
than four by artificial faces.

3. We use a variant of Tamassia’s bend minimising algorithm in which the un-
derlying network differs from the original one in [20]: a minimum cost flow
corresponds to a bend-minimum shape in which, due to a second optimi-
sation goal, the number of 180-degree angles between edges is maximum.
This avoids unnecessary staircase-like structures in the shape and makes
the following compaction task easier. We replace bends by artificial verti-
ces in the resulting orthogonal representation and get a simple orthogonal
representation H) which we use as the input for the compaction algorithms.

We choose this strategy, because it is among the orthogonal methods which
yield the best layouts in practice. Note that the number of nodes in H is higher
than the number of nodes in G. Especially for the non-planar practical graphs,
where not only the bends but also the crossings count as vertices, this leads to
an uneven distribution of graph sizes. Because the number of crossings has a
strong influence on the behaviour of the compaction algorithms, we provide the
number of crossings and details on the distribution of the input data at [23].

Total Edge Length. First we consider the set of 4-planar graphs. We divide the
instances in subgroups according to their sizes with steps of 20 vertices. For
each group we compute the average total edge length first for the four con-
structive heuristics (see Fig. @D, for the four methods with longest path-based
improvement (undisplayed) and for the methods with flow-based improvement
(Fig. . We display the results relative to the optimum edge length which is
provided by oPT. Longest path-based post-compaction does not lead to signifi-
cant improvements in terms of total edge length. This behaviour could also be
observed with the practical graphs and the quasi-trees, we therefore will not dis-
play the data for improvement with the longest path method (see also Fig. .

An Experimental Comparison of Orthogonal Compaction Algorithms 45

(d) T2 (e) LPLP (f) LPFL

(g) T1FL (h) T2FL (i) opT

Fig. 4. quasiTree.60.5.1gr compacted by different methods

Obviously the biconnected graphs are easy to compact: Already the worst
constructive method in terms of edge length, LP, achieves quite good results.
Improving the drawings with the flow method often results in an optimal dra-
wing. The plot also indicates that the methods LPFL, T1FL and FLFL result in
very similar values—which is also true for the other test-suites.

46 G.W. Klau, K. Klein, and P. Mutzel

We partition the more than 11,000 graphs corresponding to practical data
in the same way as the biconnected graphs. Figure [6] shows the resulting total
edge length for different methods relative to the optimum value computed by
OPT. On the one hand, the practical graphs behave like the biconnected gra-
phs: The heuristics are close to the optimum value and almost reach it when
using improvement with flow. On the other hand, bigger instances are easier to
compact, whereas the biconnected graphs indicate the opposite. This is due to
the high number of crossings as produced by the prior planarisation step. The
higher this number, the simpler the shapes of the faces. For the bigger graphs,
we often observe that almost all faces have rectangular shape; this explains the
good performance of all methods for big planarised graphs.

A different view of the improvement with the flow method shows its influence
on the quality more drastically. In Fig. [l we grouped the graphs according
to their size using a step size of 50 vertices and showed for each constructive
heuristics its value before and after the improvement step. Again, it can be
observed that the big planarised graphs are almost optimally compacted by the
heuristics. Additionally, the plot illustrates that the choice of the constructive
heuristics in the first step does not have a big impact of the final quality: what
matters is the improvement with the flow method.

The most challenging instances for the compaction problem are the quasi-
trees. We first consider the smaller instances where OPT could find the optimal
solution or at least a very good bound within the time limit. These are 75 graphs
with 40 to 85 vertices in the original graph, resulting in 44 to 121 vertices in the
simple orthogonal representation. Figure[illustrates the quality of the heuristics
with respect to the optimum value. Again, the best heuristics perform very well:
Even for these hard instances, three of them (T1FL, T2FL and FLFL) always stay
below 1.1 times the optimum value, alternating at the top position among the

116 L L L L L L L L 102

112 4 r 101.5

104 A 1005

T T T T T T T T 100 u T T T T T u T
20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
#nodes #nodes

(a) Constructive heuristics (b) Improvement with flow

Fig. 5. 4-planar biconnected graphs: total edge length relative to optimal value

An Experimental Comparison of Orthogonal Compaction Algorithms 47

108

107 1

106 -

105 -

%
-
o
r
L

103 4/
102 4/

101 +

100
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 38
#nodes

Fig. 6. Practical graphs: total edge length relative to optimal value

Ipfi

tfl
t2fl

total edge length % to opt
S
s
L
T

50 100 150 200 250 300 350 400
#nodes

Fig. 7. Practical graphs: impact of the flow method

heuristic methods. Another observation is that the quality of the methods is
relatively independent of the graph size.

We also look at the trend when the sizes of the quasi-trees grow and in-
vestigate the quality of the methods for 490 bigger instances in the range of
100 to 2,500 original vertices. Here, we choose T2FL as the comparison method,
see Fig. @ Again, T1FL, FLFL and LPFL are very close together and manage in
some cases to beat the comparison method. In the plot, we display LPFL and the
four constructive heuristics whose quality decreases as the instance sizes grow.
It can be seen that the methods based on rectangular dissection perform simi-
larly, as a stand-alone heuristics, T2 is the best. But using flow compaction as
an improvement almost nullifies this advantage.

48 G.W. Klau, K. Klein, and P. Mutzel

160

150 A

140 £~ L
D\o 130 b ;;;;;‘NV

120 1 r

100 T T T
60 80 100 120 140
#nodes

Fig. 8. Small quasi-trees: total edge length relative to optimal value

220 .

200 4

180 1

160 -

%

140 -

120 1 T L

100 d-ean e T e T |

80

T T T T T T T T T T T
300 600 900 1200 1500 1800 2100 2400 2700 3000 3300
#nodes

Fig. 9. Big quasi-trees: total edge length relative to T2FL

Running Time. All implementations run very fast on the biconnected and prac-
tical instances, where the constructive heuristics stay below .5 seconds and the
improvement heuristics stay below .8 seconds on all instances. Even opT which
computes a provable optimal solution stays below four seconds on all instances.
In the case of the hard compaction instances, most methods stay inside a five
second time limit for graphs up to 1,000 vertices. On the large instances, the
running time increases to up to 75 seconds for the flow improvement heuristics.
Generally, there is a typical pattern for the performance of the methods which
can be observed in all graph sets: Heuristics LP beats every other implementa-
tion in terms of running time. For the flow-based methods, FL has an advantage
over T1 and T2, which are slowest among the constructive methods. This order
remains the same when applying an improvement heuristics.

An Experimental Comparison of Orthogonal Compaction Algorithms 49

Other Criteria. In [10], Bridgeman et al. report a ratio of turn-regular faces
of about 95% in their biconnected graphs suite. We have the same results with
exception of the small quasi-trees, where only about 81% of the faces are regular.
We count the number of edges inserted during the dissection heuristics for Lp,
T1 and T2. For the biconnected and practical instances, the number of inserted
edges for T1 is only about one tenth of the number for LP, and for T2, only about
3 percent of that number has to be inserted to achieve regular faces. In the case
of harder instances, however, the number of edges to be inserted for T1 raises
to roughly half the number of edges for LP and also the number for T2 raises
relative to LP. Even for a small number of inserted edges, the choice which edge
to insert in heuristics T2 can have a strong impact on the compaction result.
The maximal edge lengths and the area in the computed drawings behave
similar to the total edge lengths for the given graph sets. For the biconnected
and practical graphs, the average maximal edge lengths per subgroup lie close
together. Among the constructive methods, T1 and T2 have a slight advantage
over the other methods. As for the total edge length, the flow improvement has
only a small impact on the results. The results for the quasi-trees, however, show
a bigger variation. Heuristics T2 performs best among the constructive methods,
but combination with the flow improvement can drastically reduce the lengths for
all constructive methods. Here, too, the flow improvement dominates the quality
of the result, the differences in the results of the initial methods vanish. The area
and perimeter results show the same behaviour: In case of hard instances, flow
improvement can help to enhance the quality and to close the gap created by
the initial methods, otherwise the constructive heuristics lie close together and
show only a slight improvement when flow is applied on their initial layout.

5 Conclusions

We have evaluated the state-of-the-art compaction techniques for orthogonal
graph drawing in terms of quality and run time performance. We propose to
divide the heuristic methods into constructive heuristics and improvement heu-
ristics which yields many different compaction techniques. We have compared
the results of the heuristics both against the optimal drawings and against each
other. In our experiments, we have used three different test-suites to test the
algorithms: easy, practical and hard instances and come to the following main
conclusions:

Heuristics perform very well on most instances of the compaction problem.
Especially for the data from the easy and practical instances we could observe
an excellent behaviour, both in terms of quality and running time. We want to
emphasise, however, that in some cases it is desirable to get an optimal drawing,
e.g., when quality is more important than running time. Moreover, the imple-
mentation of the ILP-based algorithm is essential to compare the heuristics.

The choice of the constructive heuristics does not matter as long as flow com-
paction is used as post-processing.

Although the results for the constructive methods differ significantly, the diffe-

50 G.W. Klau, K. Klein, and P. Mutzel

rences vanish when using flow-based compaction in an improvement step. We
therefore propose to use a simple constructive method, e.g., rectangular diss-
ection and longest path-based coordinate assignment, followed by a flow-based
post-processing step, which yields also the best running time among the good
heuristics. The implementational effort for this variant is low as compared to the
relatively complex turn-regularity-based techniques.

Graphs with many crossings are easy to compact.
In the topology-shape-metrics approach, crossings are treated as artificial ver-
tices. The more crossings a drawing contains, the simpler are the shapes of its
faces. For the big planarised graphs in the practical test-suite we observe that
in many cases almost all faces have rectangular shape. Such graphs provide easy
instances of the compaction problem.

Ezxperimental studies help to improve the algorithms.
When we had the idea of doing a comparison between the different compaction
techniques, we had in mind to simply provide the missing methods as modules
inside our graph drawing library and run everything on a large number of gra-
phs. This turned out to be more difficult than expected but at the same time
very useful. During the more than 500,000 compaction runs we still found a con-
siderable number of errors in our implementations which we considered stable
in the beginning. This helped us to understand the two-dimensional compaction
problem in graph drawing more deeply and we are now convinced that testing al-
gorithms on a really large number of graphs—including pathological instances—
helps a lot to provide good implementations.

References

1. C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data-flow diagrams.
IEEE Trans. Soft. Eng., SE-12(4):538-546, 1986.

2. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and reada-
bility of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61-79, 1988.

3. M. Jiinger and P. Mutzel. Maximum planar subgraphs and nice embeddings:
Practical layout tools. Algorithmica, Special Issue on Graph Drawing, 16(1):33-59,
1996.

4. P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a
planar graph. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors,
Integer Programming and Combinatorial Optimization (IPCO ’99), volume 1610
of LNCS, pages 361-376. Springer-Verlag, 1999.

5. C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar
graph. Technical report, Technische Universitit Wien, 2000. Submitted for publi-
cation.

6. U. Fofmeier and M. Kaufmann. Drawing high degree graphs with low bend num-
bers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD ’95), volume 1027
of LNCS, pages 254-266. Springer—Verlag, 1996.

7. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings
with the minimum number of bends. In Proc. 5th Workshop Algorithms Data
Struct. (WADS °97), volume 1272 of LNCS, pages 331-344, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

An Experimental Comparison of Orthogonal Compaction Algorithms 51

M. Eiglsperger, U. F6Bmeier, and M. Kaufmann. Orthogonal graph drawing with
constraints. In Proc. 11th Symposium on Discrete Algorithms (SODA ’00). ACM-
SIAM, 2000.

G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical
Report MPI-1-98-1-013, Max—Planck—Institut fiir Informatik, Saarbriicken, 1998.
S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vis-
mara. Turn-regularity and optimal area drawings for orthogonal representations.
Computational Geometry Theory and Applications (CGTA). To appear.

G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In
G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Program-
ming and Combinatorial Optimization (IPCO ’99), volume 1610 of LNCS, pages
304-319. Springer—Verlag, 1999.

C. Gutwenger, M. Jiinger, G. W. Klau, and P. Mutzel. Graph drawing algorithm
engineering with AGD. Technical report, Technische Universitdt Wien, 2000.
AGD. AGD User Manual. Max-Planck-Institut Saarbriicken, Universitdt Halle,
Universitat Koln, 1999. http://www.mpi-sb.mpg.de/AGD.

Graph drawing toolkit: An object-oriented library for handling and drawing graphs.
http://www.dia.uniroma3.it/ gdt|

N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing.
In S. Whitesides, editor, Graph Drawing (Proc. GD ’98), volume 1547 of Lecture
Notes in Computer Science, pages 138-152. Springer-Verlag, 1998.

G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Computational
Geometry: Theory and Applications, 7:303-316, 1997.

G. Di Battista, A. Garg, and G. Liotta. An experimental comparison of three
graph drawing algorithms. In Proceedings of the 11th Annual Symposium on Com-
putational Geometry (SoCG’95), pages 306-315, 1995.

M. Jiinger and P. Mutzel. Exact and heuristic algorithms for 2-layer straightline
crossing minimization. In F. J. Brandenburg, editor, Proceedings of the 3rd In-
ternational Symposium on Graph Drawing (GD’95), volume 1027 of LNCS, pages
337-348. Springer—Verlag, 1995.

F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison
of force-directed and randomized graph drawing algorithms. In F. J. Branden-
burg, editor, Proceedings of the 3rd International Symposium on Graph Drawing
(GD ’95), volume 1027 of LNCS, pages 76-87. Springer—Verlag, 1996.

R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421-444, 1987.

M. Patrignani. On the complexity of orthogonal compaction. In F. Dehne,
A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proc. 6th International Works-
hop on Algorithms and Data Structures (WADS ’99), volume 1663 of LNCS, pages
56-61. Springer—Verlag, 1999.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons, New York, 1990.

G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal
compaction algorithms. Technical Report TR-186-1-00-03, Technische Universitéat
Wien, 2000. Online version at
http://www.ads.tuwien.ac.at/publications/TR/TR-186-1-00-03!

http://www.mpi-sb.mpg.de/AGD
http://www.dia.uniroma3.it/~gdt
http://www.ads.tuwien.ac.at/publications/TR/TR-186-1-00-03

	An Experimental Comparison of Orthogonal Compaction Algorithms (Extended Abstract)
	Introduction
	The Compaction Problem
	Orthogonal Compaction Algorithms
	Constructive Heuristics
	Improvement Heuristics
	Optimal Compaction

	Computational Experiments
	Conclusions
	References

