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Abstract. The data structure SPQR-tree represents the decomposition
of a biconnected graph with respect to its triconnected components.
SPQR-trees have been introduced by Di Battista and Tamassia [8] and,
since then, became quite important in the field of graph algorithms.
Theoretical papers using SPQR-trees claim that they can be implemen-
ted in linear time using a modification of the algorithm by Hopcroft and
Tarjan [15] for decomposing a graph into its triconnected components.
So far no correct linear time implementation of either triconnectivity
decomposition or SPQR-trees is known to us. Here, we show the incor-
rectness of the Hopcroft and Tarjan algorithm [15], and correct the faulty
parts. We describe the relationship between SPQR-trees and triconnec-
ted components and apply the resulting algorithm to the computation
of SPQR-trees. Our implementation is publically available in AGD [1].

1 Introduction

The data structure SPQR-tree represents the decomposition of a biconnected
graph with respect to its triconnected components. SPQR-trees have been intro-
duced by Di Battista and Tamassia [8] in a static and in a dynamic environment.
In [8,10], the authors use SPQR-trees in order to represent the set of all planar
embeddings of a planar biconnected graph.

Since then, SPQR-trees evolved to an important data structure in the field
of graph algorithms. Many linear time algorithms that work for triconnected
graphs only can be extended to work for biconnected graphs using SPQR-trees
(e.g., [4,17]). Often it is essential to represent the set of all planar embeddings
of a planar graph, e.g. in order to optimize a specific criteria over all planar
embeddings [14,21,3,5], or for testing cluster planarity [18,6]. In a dynamic envi-
ronment, SPQR-trees are useful for a variety of on-line graph algorithms dealing
with triconnectivity, transitive closure, minimum spanning tree, and planarity
testing [2]. Here, we restrict our attention to the static environment.

In the theoretical papers (e.g., [8,9,10]), the authors suggest to construct the
data structure SPQR-tree in linear time “using a variation of the algorithm of [15]
for finding the triconnected components of a graph...[10]”. So far, to our kno-
wledge, no correct linear time implementation is publically available. The only
correct implementation of SPQR-trees we are aware of is part of GDToolkit [12],
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where SPQR-trees are used in connection with a branch-and-bound algorithm
to compute an orthogonal drawing of a biconnected planar graph with the mi-
nimum number of bends. However, this implementation does not run in linear
time [11].

Here, we present a linear time implementation of the data structure SPQR-
tree. We show the relationship between SPQR-trees and triconnected compo-
nents, and show the incorrectness of the algorithm presented in [15] for decom-
posing a graph into its triconnected components. We develop a correct algorithm
for triconnectivity decomposition by correcting and replacing the faulty parts in
[15], and apply it to the computation of SPQR-trees. Our implementation (in a
re-usable form) is publically available in AGD [1] (see Section 6).

The paper is structured as follows. The basics of SPQR-trees and triconnected
components are described in Section 3. The algorithm for computing SPQR-trees
and triconnectivity decomposition is described in Section 4, and the faulty parts
of the Hopcroft and Tarjan algorithm are shown in Section 5, where we also point
out the corrections we have made. We have carefully tested our implementation.
Computational results concerning running time are described in Section 6.

2 Preliminaries

Let G = (V, E) be an undirected multi-graph, that is, V is a set of vertices and
E is a multi-set of unordered pairs (u, v) with u, v ∈ V . An edge (v, v) is called a
self-loop. If an edge (u, v) ∈ E occurs more than once in E, it is called a multiple
edge. G is called simple, if it contains neither self-loops nor multiple edges. If E′

is a set of edges, V (E′) denotes the set of all vertices incident to at least one
edge in E′. A path p : v

∗⇒ w in G is a sequence of vertices and edges leading
from v to w. A path is simple if all its vertices are distinct. If p : v

∗⇒ w is a
simple path, then p plus the edge (w, v) is a cycle.

An undirected multi-graph G = (V, E) is connected if every pair v, w ∈ V of
vertices in G is connected by a path. A connected multi-graph G is biconnected
if for each triple of distinct vertices v, w, a, there is a path p : v

∗⇒ w such that a
is not on p. Let G = (V, E) be a biconnected multi-graph and a, b ∈ V . E can be
divided into equivalence classes E1, . . . , Ek such that two edges which lie on a
common path not containing any vertex of {a, b} except as an endpoint are in the
same class. The classes Ei are called the separation classes of G with respect to
{a, b}. If there are at least two separation classes, then {a, b} is a separation pair
of G unless (i) there are exactly two separation classes, and one class consists of
a single edge, or (ii) there are exactly three classes, each consisting of a single
edge. If G contains no separation pair, G is called triconnected.

A tree T is a directed graph whose underlying undirected graph is connected,
such that there is exactly one vertex (called the root) having no incoming edges
and every other vertex has exactly one incoming edge. An edge in T from v to w
is denoted with v → w. If there is a (directed) path from v to w, we write v

∗→ w.
If v → w, v is the parent of w, and w a child of v. If v

∗→ w, v is an ancestor
of w, and w a descendant of v. Every vertex is an ancestor and a descendant of
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itself. If G is a directed multi-graph, a tree T is a spanning tree of G if T is a
subgraph of G and T contains all vertices in G.

A palm tree P is a directed multi-graph such that each edge in P is a either
a tree arc (denoted with v → w) or a frond (denoted with v ↪→ w) satisfying the
following properties:

(i) The subgraph T consisting of all tree arcs is a spanning tree of P .
(ii) If v ↪→ w, then w

∗→ v.

3 SPQR-Trees and Triconnected Components

Let G = (V, E) be a biconnected multi-graph, {a, b} a separation pair of G, and
E1, . . . , Ek the separation classes of G with respect to {a, b}. Let E′ =

⋃`
i=1 Ei

and E′′ =
⋃k
i=`+1 Ei be such that |E′| ≥ 2 and |E′′| ≥ 2. The two graphs

G′ = (V (E′), E′ ∪ {e}) and G′′ = (V (E′′), E′′ ∪ {e}) are called split graphs of G
with respect to {a, b}, where e = (a, b) is a new edge. Replacing a multi-graph G
by two split graphs is called splitting G. Each split graph is again biconnected.
The edge e is called virtual edge and identifies the split operation.

Suppose G is split, the split graphs are split, and so on, until no more split
operations are possible. The resulting graphs are called the split components of
G. Each of them is a set of three multiple edges (triple bond), or a cycle of length
three (triangle), or a triconnected simple graph. The split components are not
necessarily unique.

Lemma 1. Let G = (V, E) be a multi-graph.

(i) Each edge in E is contained in exactly one, and each virtual edge in exactly
two split components.

(ii) [15] The total number of edges in all split components is at most 3|E| − 6.

Let G1 = (V1, E1) and G2 = (V2, E2) be two split components containing
the same virtual edge e. The graph G′ = (V1 ∪ V2, (E1 ∪ E2) \ {e}) is called a
merge graph of G1 and G2. Replacing two components G1 and G2 by a merge
graph of G1 and G2 is called merging G1 and G2. The triconnected components
of G are obtained from its split components by merging the triple bonds into
maximal sets of multiple edges (bonds) and the triangles into maximal simple
cycles (polygons).

Lemma 2. [19,15] The triconnected components of G are unique.

Triconnected components of graphs are closely related to SPQR-trees. SPQR-
trees were originally defined in [8] for planar graphs only. Here, we cite the more
general definition given in [9], that also applies to not necessarily planar graphs.

Let G be a biconnected graph. A split pair of G is either a separation pair or
a pair of adjacent vertices. A split component of a split pair {u, v} is either an
edge (u, v) or a maximal subgraph C of G such that {u, v} is not a split pair of
C. Let {s, t} be a split pair of G. A maximal split pair {u, v} of G with respect
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to {s, t} is such that, for any other split pair {u′, v′}, vertices u, v, s, and t are
in the same split component.

Let e = (s, t) be an edge of G, called the reference edge. The SPQR-tree T
of G with respect to e is a rooted ordered tree whose nodes are of four types:
S, P, Q, and R. Each node µ of T has an associated biconnected multi-graph,
called the skeleton of µ. Tree T is recursively defined as follows:

Trivial Case: If G consists of exactly two parallel edges between s and t, then
T consists of a single Q-node whose skeleton is G itself.

Parallel Case: If the split pair {s, t} has at least three split components G1, . . . ,
Gk, the root of T is a P-node µ, whose skeleton consists of k parallel edges
e = e1, . . . , ek between s and t.

Series Case: Otherwise, the split pair {s, t} has exactly two split components,
one of them is e, and the other one is denoted with G′. If G′ has cutvertices
c1, . . . , ck−1 (k ≥ 2) that partition G into its blocks G1, . . . , Gk, in this
order from s to t, the root of T is an S-node µ, whose skeleton is the cycle
e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei = (ci−1, ci) (i = 1, . . . , k).

Rigid Case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G with respect to {s, t} (k ≥ 1), and, for i = 1, . . . , k,
let Gi be the union of all the split components of {si, ti} but the one contai-
ning e. The root of T is an R-node, whose skeleton is obtained from G by
replacing each subgraph Gi with the edge ei = (si, ti).

Except for the trivial case, µ has children µ1, . . . , µk, such that µi is the root
of the SPQR-tree of Gi ∪ ei with respect to ei (i = 1, . . . , k). The endpoints
of edge ei are called the poles of node µi. The virtual edge of node µi is edge
ei of skeleton of µ. Tree T is completed by adding a Q-node, representing the
reference edge e, and making it the parent of µ so that it becomes the root.

Each edge in G is associated with a Q-node in T . Each edge ei in skeleton
of µ is associated with the child µi of µ. It is possible to root T at an arbitrary
Q-node µ′, resulting in an SPQR-tree with respect to the edge associated with µ′

[9]. In our implementation, we use a slightly different, but equivalent, definition
of SPQR-tree. We omit Q-nodes and distinguish between real edges and virtual
edges in the skeleton graphs instead. An edge in the skeleton of µ which is
associated with a Q-node in the original definition is a real edge that is not
associated with a child of µ, all other skeleton edges are virtual edges associated
with a P-, S-, or R-node. Using this modified definition, we can show that the
skeleton graphs are the unique triconnected components of G:

Theorem 1. Let G be a biconnected multi-graph and T its SPQR-tree.

(i) The skeleton graphs of T are the triconnected components of G. P-nodes
correspond to bonds, S-nodes to polygons, and R-nodes to triconnected simple
graphs.

(ii) There is an edge between two nodes µ, ν ∈ T if and only if the two corre-
sponding triconnected components share a common virtual edge.

(iii) The size of T , including all skeleton graphs, is linear in the size of G.
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Proof. (sketch) We remark that if {u, v} is a separation pair, the split compo-
nents of {u, v} are the separation classes with respect to {u, v}. In the parallel, se-
ries, and rigid case of the definition of SPQR-tree, subgraphs G1, . . . , Gk are con-
sidered. Assume that G1, . . . , G` contains more than one edge, and G`+1, . . . , Gk

contains exactly one edge. In each of the three cases, the recursive decomposition
step can be realized by performing ` split operations, each splitting off one Gi,
1 ≤ i ≤ ` and introducing a new virtual edge e′ in the skeleton of node µ and the
skeleton of a child µi of µ. since e′ remains in the skeleton of µi in subsequent
steps, part (ii) of the theorem follows.

The final skeleton graphs are each either a polygon, a bond, or a simple
triconnected graph, and no two polygons, and no two bonds share a common
virtual edge. Thus, the skeleton graphs are the unique triconnected components
of G proving part (i). The last part of the theorem follows directly from (i) and
Lemma 1. ut

4 The Algorithm

Let G be a biconnected multi-graph without self-loops. According to Theorem 1,
it suffices to compute the triconnected components of G, which give us enough
information to build the SPQR-tree of G. We correct the faulty parts in the
algorithm by Hopcroft and Tarjan [15] and apply this modified algorithm for
computing the triconnected components. We focus on the computation of split
pairs, because the description of this part in [15] is not only confusing but con-
tains also severe errors. For an overview of the Hopcroft and Tarjan algorithm,
please refer to [15] or [13].

4.1 Computing SPQR-Trees

Input to the algorithm is a biconnected multi-graph G = (V, E) and a reference
edge er. In the first step, bundles of multiple edges are replaced by a new virtual
edge as shown in Alg. 1. This creates a set of bonds C1, . . . , Ck and results in
a simple graph G′. The required sorting of the edges in line 1.1 can be done in
O(|V |+ |E|) time using bucket sort two times. Firstly according to the endpoint
with lower index, and secondly to the one with higher index, where we assume
that vertices have unique indices in the range 1, . . . , |V |. The for-loop in line 1.2
iterates over all edges, so Alg. 1 has running time O(|V | + |E|).

Algorithm 1: Split off multiple edges
1.1 Sort edges such that all multiple edges come after each other
1.2 for each maximal bundle of multiple edges e1, . . . , e` with ` ≥ 2 do

let e1, . . . , e` be edges between v and w
replace e1, . . . , e` by a new edge e′ = (v, w)
create a new component C = {e1, . . . , e`, e

′}
end



82 C. Gutwenger and P. Mutzel

The second step finds the split components Ck+1, . . . , Cm of G′. The pro-
cedure is presented in detail in the next subsection. The triconnected compo-
nents of the input graph G are created by partially reassembling the components
C1, . . . , Cm. As long as two bonds or two polygons Ci and Cj containing the same
virtual edge exist, Ci and Cj are merged. This is shown in Alg. 2. Removed com-
ponents are marked as empty. The forall-loop in line 2.1 steps over all edges in
Ci, i.e. those added to Ci during the loop. The test in line 2.1 can be done in
constant time by precomputing for each virtual edge e the two components to
which e belongs. We represent the edges in a component Ci by a list of edges,
which allows to implement the set operations in lines 2.3 and 2.4 in constant
time. According to Lemma 1, the total number of edges in all components is
O(|E|), so Alg. 2 can also be implemented in time O(|V | + |E|).

Algorithm 2: Build triconnected components
for i := 1 to m do

if Ci 6= ∅ and Ci is a bond or a polygon then
2.1 forall e ∈ Ci do
2.2 if there exists j 6= i with e ∈ Cj and type(Ci) = type(Cj) then
2.3 Ci := (Ci ∪ Cj) \ {e}
2.4 Cj := ∅

end
od

end
end

The preceding steps give enough information to build the SPQR-tree T of
G. Applying Theorem 1, it is easy to construct the unrooted version of T . Since
we omit Q-nodes in our representation, we root T at the node whose skeleton
contains the reference edge er. During the construction, we also create cross links
between each tree edge µ → ν in T and the two corresponding virtual edges in
skeleton of µ and skeleton of ν.

4.2 Finding Separation Pairs

Suppose we have a palm tree P for the simple, biconnected graph G′ = (V, E′),
and the vertices of G′ are numbered 1, . . . , |V |. In the following, we identify
vertices with their numbers. We introduce the following notation:

lowpt1(v) = min
(
{v} ∪ {w | v

∗→↪→ w}
)

lowpt2(v) = min
(
{v} ∪

(
{w | v

∗→↪→ w} \ {lowpt1(v)}
))

That is, lowpt1(v) is the lowest vertex reachable by traversing zero or more tree
arcs followed by one frond of P (or v if no such vertex exists), and lowpt2(v) is
the second lowest vertex reachable this way (or v if no such vertex exists).



A Linear Time Implementation of SPQR-Trees 83

We denote with Adj (v) the ordered (non-cyclic) adjacency list of a vertex
v, and with D(v) the set of descendants of v. We seek for a numbering of the
vertices and ordering of the edges in the adjacency lists satisfying the following
properties:

(P1) the root of P is 1.
(P2) if v ∈ V and w1, . . . , wn are the children of v in P according to the ordering

in Adj (v), then wi = w + |D(wi+1) ∪ . . . ∪ D(wn)| + 1.
(P3) the edges e in Adj (v) are in ascending order according to lowpt1(w) if

e = v → w, or w if e = v ↪→ w, respectively.
Let w1, . . . , wn be the children of v with lowpt1(wi) = u in the order given
by Adj (v). Then there exists an i0 such that lowpt2(wi) < v for 1 ≤ i ≤ i0,
and lowpt2(wj) ≥ v for i0 < j ≤ n. If v ↪→ u ∈ E′, then v ↪→ u comes in
Adj (v) between v → wi0 and v → wi0+1.

It is shown in [15], how to compute such a numbering of the vertices and ordering
of the adjacency lists in linear time. Unlike [15], we demand that a frond v ↪→ w,
if contained in E′, must come between v → wi0 and v → wi0+1 in Adj (v). This
can easily be done by adapting the sorting function φ used in [15]:

φ(e) =




3lowpt1(w) if e = v → w and lowpt2(w) < v
3w + 1 if e = v ↪→ w

3lowpt1(w) + 2 if e = v → w and lowpt2(w) ≥ v

The required ordering can be obtained by sorting the edges according to their
φ-values using bucket sort. Using ordering φ and procedure PATHSEARCH as
suggested in [15] will not recognize all multiple edges and thus not correctly
compute the split components of G′.

Suppose we perform a depth-first-search on G′ using the ordering of the edges
in the adjacency lists. This divides G′ into a set of paths consisting of zero or
more tree arcs followed by one frond. The first path starts at vertex 1 and a
path ends, when the first frond on the path is reached (see Fig. 1). Each path
ends at the lowest possible vertex, and has only its initial and terminal vertex
in common with previously traversed paths. From each such path p : v

∗⇒ w, we
can form a cycle by adding the tree path from w

∗→ v to p (compare [15,16]).

Example 1. Fig. 1 shows a palm tree with a numbering that satisfies (P1)-(P3).
The edges are numbered according to the generated paths. The generated paths
are

1: 1 → 2 → 3 → 13 ↪→ 1 7: 12 ↪→ 9
2: 13 ↪→ 2 8: 10 → 11 ↪→ 8
3: 3 → 4 ↪→ 1 9: 11 ↪→ 9
4: 4 → 5 → 8 ↪→ 1 10: 5 → 6 → 7 ↪→ 4
5: 8 → 9 → 10 → 12 ↪→ 1 11: 7 ↪→ 5
6: 12 ↪→ 8 12: 6 ↪→ 4

We need one more definition: un is a first descendant of u0 if u0 → · · · → un
and each ui → ui+1 is the first edge in Adj (ui). In the sequel, we consider a palm
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Fig. 1. Palm tree with numbered vertices and generated paths.

tree P satisfying (P1)-(P3). The following lemma gives us three easy-to-check
conditions for separation pairs.

Lemma 3. (Lemma 13 in [15]) Let G = (V, E) be a biconnected graph and a, b
be two vertices in G with a < b. Then {a, b} is a separation pair if and only if
one of the following conditions holds.

Type-1 Case: There are distinct vertices r 6= a, b and s 6= a, b such that b → r,
lowpt1(r) = a, lowpt2(r) ≥ b, and s is not a descendant of r.

Type-2 Case: There is a vertex r 6= b such that a → r
∗→ b, b is a first descendant

of r, a 6= 1, every frond x ↪→ y with r ≤ x < b has a ≤ y, and every frond
x ↪→ y with a < y < b and b → w

∗→ x has lowpt1(w) ≥ a.
Multiple Edge Case: (a, b) is a multiple edge of G and G contains at least four

edges.

Example 2. Consider the palm tree from Fig. 1. We have the following separation
pairs:

type-1 pairs: (1, 4), (1, 5), (4, 5), (1, 8), (1, 3)
type-2 pairs: (4, 8), (8, 12)
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4.3 Finding Split Components

During the algorithm, we maintain a graph Gc and a palm tree Pc of Gc. We
denote with deg(v) the degree of v in Gc, with v → w a tree arc in Pc, with
v ↪→ w a frond in Pc, with parent(v) the parent of v in Pc, and with ND(v) the
number of descendants of v in Pc. Each time we identify a split component C, we
split it off, and Gc and Pc are updated. We use the following update functions:

C := new component(e1, . . . , e`): a new component C = {e1, . . . , e`} is created,
and e1, . . . , e` are removed from Gc.

C := C ∪ {e1, . . . , e`}: the edges e1, . . . , e` are added to C and removed from Gc.
e′ := new virtual edge(v, w, C): a new virtual edge e′ = (v, w) is created and

added to component C and Gc.
make tree edge(e, v → w): makes edge e = (v, w) a new tree edge in Pc.

Moreover, we define the access functions

firstChild(v) = first child of v in Pc according to Adj (v).

high(w) =
{

0 if F (w) = ∅
source vertex of first visited edge in F (w) otherwise

where F (w) = {v | v ↪→ w ∈ Ec}, and we use two stacks for which the usual
functions push, pop, and top are defined:

ESTACK contains already visited edges that are not yet assigned to a split com-
ponent.

TSTACK contains triples (h, a, b) (or a special end-of-stack marker EOS ), such
that {a, b} is a potential type-2 separation pair, and h is the highest num-
bered vertex in the component that would be split off.

The algorithm starts by calling the recursive procedure PathSearch for vertex
1, the root vertex of P (see Alg. 3). When returning from the call, the edges
belonging to the last split component are on ESTACK.

Algorithm 3: Find split components
TSTACK.push(EOS)
PathSearch(1)
let e1, . . . , e` be the edges on ESTACK

3.1 C := new component(e1, . . . , e`)

Procedure PathSearch is shown in Alg. 4. The testing for separation pairs
applying Lemma 3 is depicted separately in Alg. 5 for type-2 and in Alg. 6 for
type-1 separation pairs1. For a detailed description of the algorithm, please refer
to [15,13]. In order to achieve linear running time, we set up the following data
structures:
1 The algorithm will not find all separation pairs, but only the separation pairs needed

for dividing the graph into its split components
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Algorithm 4: PathSearch(v)
forall e ∈ Adj(v) do

if e = v → w then
if e starts a path then

pop all (h, a, b) with a > lowpt1(w) from TSTACK
if no triples deleted then

TSTACK.push(w + ND(w) − 1, lowpt1(w), v)
else

y := max{h | (h, a, b) deleted from TSTACK }
let (h, a, b) be last triple deleted
TSTACK.push(max(y, w + ND(w) − 1), lowpt1(w), b)

end
TSTACK.push(EOS)

end

PathSearch(w)
ESTACK.push(v → w)

check for type-2 pairs
check for a type-1 pair

if e starts a path then
remove all triples on TSTACK down to and including EOS

end
4.1 while (h, a, b) on TSTACK has a 6= v and b 6= v and high(v) > h do

TSTACK.pop()
od

else
let e = v ↪→ w
if e starts a path then

pop all (h, a, b) with a > w from TSTACK
if no triples deleted then

TSTACK.push(v, w, v)
else

y := max{h | (h, a, b) deleted from TSTACK }
let (h, a, b) be last triple deleted
TSTACK.push(y, w, b)

end
end
if w = parent(v) then

C := new component(e, w → v)
e′ := new virtual edge(w, v, C)
make tree edge(e′, w → v)

else
ESTACK.push(e)

end
end

od
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Algorithm 5: check for type-2 pairs
while v 6= 1 and (((h, a, b) on TSTACK has a = v) or (deg(w) = 2 and
firstChild(w) > w)) do

if a = v and parent(b) = a then
TSTACK.pop()

else
eab := nil
if deg(w) = 2 and firstChild(w) > w then

C := new component()
remove top edges (v, w) and (w, b) from ESTACK and add to C
e′ := new virtual edge(v, x, C)
if ESTACK.top() = (v, b) then eab := ESTACK.pop()

else
(h, a, b) := TSTACK.pop()
C := new component()
while (x, y) on ESTACK has a ≤ x ≤ h and a ≤ y ≤ h do

if (x, y) = (a, b) then eab := ESTACK.pop()
else C := C ∪ { ESTACK.pop() }

od
e′ := new virtual edge(a, b, C)

end
if eab 6= nil then

C := new component(eab, e
′)

e′ := new virtual edge(v, b, C)
end
ESTACK.push(e′); make tree edge(e′, v → b); w := b

end
od

Algorithm 6: check for a type-1 pair
6.1 if lowpt2(w) ≥ v and lowpt1(w) < v and (parent(v) 6= 1 or v is adjacent to

a not yet visited tree arc) then
C := new component()
while (x, y) on ESTACK has w ≤ x < w+ND(w) or w ≤ y < w+ND(w)
do

C := C ∪ { ESTACK.pop() }
od
e′ := new virtual edge(v, lowpt1(w), C)
if ESTACK.top() = (v, lowpt1(w)) then

C := new component(ESTACK.pop(),e′)
e′ := new virtual edge(v, lowpt1(w), C)

end
if lowpt1(w) 6= parent(v) then

ESTACK.push(e′)
make tree edge(e′, lowpt1(w) → v)

else
C := new component(e′, lowpt1(w) → v)
e′ := new virtual edge(lowpt1(w), v, C)
make tree edge(e′, lowpt1(w) → v)

end
end
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– The palm tree P is represented by arrays PARENT[v], TREE ARC[v] (the
tree arc entering v), and TYPE[e] (tree arc or frond).

– The values lowpt1(v), lowpt2(v), and ND(v) are precomputed. It is not ne-
cessary to update them.

– An array DEGREE[v] contains the degree of v ∈ Gc. It is updated each time
an edge is added to or removed from Gc.

– In order to compute firstChild(v), we update the adjacency lists each time
an edge is added to or removed from Gc.

– In order to compute high(v), we precompute the list of fronds vi ↪→ w ending
at w in the order they are visited. When a frond is removed from or added
to Gc, the respective list is updated.

– We precompute an array START[e] which is true iff e starts a path.
– The test if “v is adjacent to a not yet visited tree arc” in line 6.1 can be

done by simply counting the visited adjacent tree arcs.

5 Corrections on the Hopcroft and Tarjan Algorithm

Procedure SPLIT in [15] does not correctly split a graph into its split compo-
nents. We summarize the important changes we have made in our algorithm:

– The sorting function φ had to be modified as described in subsection 4.2 in
order to identify all multiple edges.

– The creation of the last split component (line 3.1) was missing.
– The condition in line 4.1 was changed. The original condition could remove

triples from TSTACK corresponding to real type-2 separation pairs. Such a
separation pair could not be recognized by the original SPLIT procedure.

– The condition in line 6.1 was changed. The original condition could incor-
rectly identify separation pairs after the graph had been modified.

– The updates for firstChild(v) (which is A1(v) in [15]) and DEGREE(v) were
not sufficient.

– high(w) (which is HIGHPT(w) in [15]) was not updated, which is not correct.
It is necessary to update HIGHPT dynamically, when Gc is modified. We
replaced HIGHPT(w) by a list of fronds ending at w, which is updated as
Gc changes.

6 Computational Experiments

Our implementation is based on LEDA [20] and made publically available in
AGD [1]. We tested our implementation with generated planar and non-planar
biconnected graphs, and the benchmark graphs collected by Di Battista et al. [7]
ranging from 10 to 100 vertices. A planar biconnected graph with n vertices and
m edges is generated by n randomly chosen split-edge and m − n split face ope-
rations. A general biconnected graph is generated by creating a random graph
G and making G biconnected by augmenting edges. The computed SPQR-trees
are automatically checked with several consistency and plausibility tests. The



A Linear Time Implementation of SPQR-Trees 89

average running times are depicted in Fig. 2. The x-axis shows the number of
vertices, and the y-axis the running time in seconds. The left side shows the
results for generated graphs with n vertices and m edges applying the algorithm
to 100 test instances each. Even very large instances with 40000 edges could be
solved within less than 4 seconds. The right side shows the results for the bench-
mark graphs applying the algorithm to each biconnected component containing
at least three edges. Graphs with 100 vertices took about 0.02 seconds.

Recently, Gutwenger, Mutzel, and Weiskircher [14] have presented a linear
time algorithm for solving the one edge insertion problem optimally (minimum
number of crossings) over all combinatorial embeddings. Their algorithm requires
to compute SPQR-trees for some biconnected components of a planar input
graph. In their tests, they also used the benchmark graphs from [7] and applied
our implementation of SPQR-trees. The longest running time for a graph with
100 vertices was 1.15 seconds, where 38 edges had to be inserted.
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Fig. 2. Average running times (system configuration: Pentium II, 400 MHz, 128MB
RAM)
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