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Preface

This book contains a revised version of the dissertation the author wrote
at the Department of Computer Science of the University of Chicago. The
thesis was submitted to the Faculty of Physical Sciences in conformity with
the requirements for the PhD degree in June 1999. It was honored with the
1999 ACM Doctoral Dissertation Award in May 2000.

Summary

Computational complexity is the study of the inherent difficulty of computa-
tional problems and the power of the tools we may use to solve them. It aims
to describe how many resources we need to compute the solution as a function
of the problem size. Typical resources include time on sequential and parallel
architectures and memory space. As we want to abstract away from details
of input representation and specifics of the computer model, we end up with
classes of problems that we can solve within certain robust resource bounds
such as polynomial time, parallel logarithmic time, and logarithmic space.
Research in complexity theory boils down to determining the relationships
between these classes – inclusions and separations.

In this dissertation, we focus on the role of randomness and look at various
properties of hard problems in order to obtain separations. We also investigate
the power of nondeterminism and alternation, as well as space versus time
issues.

Randomness provides a resource that seems to help in various situations.
We study its use in the area of proof checking. We show that every property
that has a bounded-round interactive proof system has subexponential size
classical proofs (for infinitely many input sizes) unless the polynomial-time
hierarchy collapses. This provides the first strong evidence that graph noni-
somorphism has subexponential size proofs. Under a stronger hypothesis we
can scale the proof size down to polynomial size. We obtain our result by
derandomizing Arthur-Merlin games. The same technique applies to various
other randomized processes. We show how it works for the Valiant-Vazirani
random hashing procedure which prunes the number of satisfying assignments
of a propositional formula to one, the exact learning of Boolean circuits using
equivalence queries and access to a satisfiability oracle, the construction of
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matrices with high rigidity, and generating polynomial-size universal traversal
sequences.

Completeness arguably constitutes the single most pervasive concept of
computational complexity. A problem π is hard for a complexity class if we
can efficiently reduce every problem in the class to π, i.e., we can efficiently
solve any problem in the class when given access to an oracle providing soluti-
ons to instances of π. If π itself also belongs to the class, we call π complete for
the class. Several complexity classes have complete problems under various
reducibility notions. One often focuses on decision problems, or equivalently,
on the corresponding language of yes instances. In this thesis, we develop
techniques for separating complexity classes by isolating a structural diffe-
rence between their complete languages. We look at various properties from
this perspective:

Sparseness – the density of complete languages.
Autoreducibility – the redundancy of complete languages.

Resource-bounded measure – the frequency of complete languages.

Sparseness forms a candidate differentiating property that interests com-
plexity theorists because of its connections to nonuniform complexity and
to isomorphism questions. A language is sparse if it contains no more than
polynomially many instances of each size. Showing that polynomial time has
no sparse hard language under logarithmic space reductions would separate
polynomial time from logarithmic space. We establish the logical completen-
ess of this approach for reductions that can ask a bounded number of queries:
If polynomial time differs from logarithmic space then there exists no sparse
hard language for polynomial time under logarithmic space reductions with
a bounded number of queries. The proof works for various other classes as
well, e.g., for nondeterministic logarithmic space versus logarithmic space,
and for logarithmic space versus parallel logarithmic time. Another instan-
tiation states that no sparse hard language for nondeterministic polynomial
time exists under polynomial-time randomized reductions with a bounded
number of queries unless we can solve nondeterministic polynomial time in
randomized polynomial time.

Autoreducibility defines the most general type of efficient reduction of a
problem to itself. A problem is autoreducible if we can solve a given instance
in polynomial time when allowed to ask an oracle the solution to any other in-
stance. We establish that large complexity classes like doubly exponential
space have complete languages that are not autoreducible, whereas the com-
plete languages of smaller classes like exponential time all share the property
of autoreducibility. The specific results we get yield alternate proofs of known
separations. We also show that settling the question for doubly exponential
time either way, would imply major new separations: It would either separate
polynomial time from polynomial space, and nondeterministic logarithmic
space from nondeterministic polynomial time, or else the polynomial-time
hierarchy from exponential time.
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Resource-bounded measure formalizes the notions of scarceness and abun-
dance within complexity classes such as exponential time. From the separa-
tion point of view, the theory seems particularly suited for separating ran-
domized polynomial time from exponential time. Within the formalism of
resource-bounded measure, most languages turn out to be hard for randomi-
zed polynomial time under relatively powerful reductions. On the other hand,
by establishing a small span theorem and using other approaches, we prove
that exponential time and several subclasses only have a few complete or
hard languages under weaker reducibilities. A very narrow gap between the
power of the reductions remains, and bridging it would separate randomized
polynomial time from exponential time.

Another approach for settling this problem, similar in spirit to the proba-
bilistic method of combinatorics, tries to show that randomized polynomial
time is a small subclass of exponential time. We prove the logical comple-
teness of this strategy, i.e., if randomized polynomial time differs from expo-
nential time then it is a small subclass of exponential time. As a byproduct,
we obtain the first nontrivial example of a class for which the equivalent of
Kolmogorov’s 0-1 Law in resource-bounded measure holds.

One can view resource-bounded measure as a restriction of classical Lebes-
gue measure preserving properties like additivity and monotonicity. Whether
invariance under permutations also carries over, remains open. If it does,
then the class of autoreducible languages is small. We show that a resource-
bounded version of permutation invariance holds if efficient pseudo-random
generators of exponential security exist, and that if it holds, then randomized
polynomial time differs from exponential time. We develop betting games as
the basis for an alternate to resource-bounded measure for quantifying the
frequency of properties within complexity classes, with permutation invari-
ance built in.
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