Skip to main content

A Markov Model for the Design of Feedback Techniques to Match Traffic Specification Parameters in MPEG Video Sources

  • Conference paper
  • First Online:
Quality of Service in Multiservice IP Networks (QoS-IP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1989))

  • 215 Accesses

Abstract

Guaranteeing of quality-of-service (QoS) is a challenging task to promote the evolution of the Internet from a simple data network into a true multiservice network. To this end, the IETF intserv Working Group, with the goal of defining a next generation Internet, has defined two QoS classes: Guaranteed Services and Controlled-Load Services. For both of them the source is required to declare its traffic characteristics by means of a number of Tspec parameters and guarantee these traffic characteristics during transmission. The target of this paper is to develop an analytical tool for the design of feedback laws which allow MPEG encoders to inject into the network video traffic shaped according to the declared Tspec, while maintaining an acceptable perceived quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coded Representation of Picture and Audio Information, International Standard ISO-IEC/JTC1/Sc29/WG11, MPEG Test Model 2, July 1992.

    Google Scholar 

  2. A. Puri, R. Aravind, “Motion-compensated video coding with adaptive perceptual quantization,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, no. 4, December 1991.

    Google Scholar 

  3. W. Luo, M. El Zarki, “Quality Control for VBR Video over ATM Networks,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 6, August 1997.

    Google Scholar 

  4. M. Hamdi, J. W. Roberts, P. Rolin, “Rate control for VBR video coders in broadband networks,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 6, August 1997.

    Google Scholar 

  5. Paul P. White, “RSVP and Integrated Services in the Internet: a Tutorial,” IEEE Communications Magazine, Vol. 35, No. 5, May 1997.

    Google Scholar 

  6. O. Hashida, Y. Takahashi, and S. Shimogawa, “Switched Batch Bernoulli Process (SBBP) and the discrete-time SBBP/G/1 queue with application to statistical multiplexer,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 3, April 1991.

    Google Scholar 

  7. A. Lombardo, G. Morabito, G. Schembra, “An Accurate and Treatable Markov Model of MPEG-Video Traffic,” Proc. IEEE Infocom.98, San Francisco, USA, April 1998.

    Google Scholar 

  8. A. La Corte, A. Lombardo, G. Schembra, “An Analytical Paradigm to Calculate Multiplexer Performance in an ATM Multimedia Environment,” Computer Networks and ISDN Systems, vol. 29, no. 16, December 1997.

    Google Scholar 

  9. S.-qi Li, S. Park, D. Arifler, “SMAQ: A Measurement-Based Tool for Traffic Modeling and Queuing Analysis Part I: Design Methodologies and Software Architecture,” IEEE Communications Magazine, vol. 36, no. 8, August 1998.

    Google Scholar 

  10. J. J. Bae, T. Suda, R. Simha: “Analysis of Individual packet Loss in a Finite Buffer Queue with Heterogeneous Markov Modulated Arrival Processes: A study of Traffic Burstiness and a Priority packet Discarding,” Proc. IEEE INFOCOM.92, Florence, Italy, May 1992.

    Google Scholar 

  11. T. Takine, T. Suda, T. Hasegawa, “Cell Loss and Output Process Analyses of a Finite-Buffer Discrete-Time ATM Queueing System with Correlated Arrivals,” Proc. IEEE INFOCOM.93, San Francisco, CA, March 1993.

    Google Scholar 

  12. A. E. Kamal, “Efficient Solution of Multiple Server Queues with Application to the Modeling of ATM Concentrators,” Proc. IEEE INFOCOM.96, San Francisco, CA, March 1996.

    Google Scholar 

  13. M. F. Neutz, “Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach,” Johns Hopkins University Press, Baltimore, MD, USA, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cocimano, F., Lombardo, A., Schembra, G. (2001). A Markov Model for the Design of Feedback Techniques to Match Traffic Specification Parameters in MPEG Video Sources. In: Marsan, M.A., Bianco, A. (eds) Quality of Service in Multiservice IP Networks. QoS-IP 2001. Lecture Notes in Computer Science, vol 1989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44554-4_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-44554-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41512-1

  • Online ISBN: 978-3-540-44554-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics