
Lecture Notes in Computer Science 1957
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Paolo Ciancarini Michael J. Wooldridge (Eds.)

Agent-Oriented
Software Engineering

First International Workshop, AOSE 2000
Limerick, Ireland, June 10, 2000
Revised Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Paolo Ciancarini
University of Bologna, Department of Information Science
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: ciancarini@cs.unibo.it

Michael J. Wooldridge
The University of Liverpool, Department of Computer Science
Chadwick Building, Peach Street, Liverpool L69 7ZF, UK
E-mail: M.J.Wooldridge@csc.liv.ac.uk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Agent oriented software engineering : first international workshop ;
revised papers / AOSE 2000, Limerick, Ireland, June 10, 2000. Paolo
Ciancarini ; Michael Wooldridge (ed.). - Berlin ; Heidelberg ; New
York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 1957)
ISBN 3-540-41594-7

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4

ISSN 0302-9743
ISBN 3-540-41594-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
c© Springer-Verlag Berlin Heidelberg 2001

Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN: 10780995 06/3142 5 4 3 2 1 0

Preface

Software engineers have derived a progressively better understanding of the cha-
racteristics of complexity in software. It is now widely recognised that interaction
is probably the most important single characteristic of complex software. Soft-
ware architectures that contain many dynamically interacting components, each
with their own thread of control and engaging in complex coordination proto-
cols, are typically orders of magnitude more complex to correctly and efficiently
engineer than those that simply compute a function of some input through a
single thread of control.

Unfortunately, it turns out that many (if not most) real-world applications
have precisely these characteristics. As a consequence, a major research topic in
computer science over at least the past two decades has been the development
of tools and techniques to model, understand, and implement systems in which
interaction is the norm. Indeed, many researchers now believe that in the future,
computation itself will be understood chiefly as a process of interaction.

Since the 1980s, software agents and multi-agent systems have grown into
what is now one of the most active areas of research and development activity
in computing in general. There are many reasons for the current intensity of
interest, but certainly one of the most important is that the concept of an agent
as an autonomous system, capable of interacting with other agents in order to
satisy its design objectives, is a natural one for software designers. Just as we can
understand many systems as being composed of essentially passive objects, which
have a state and upon which we can perform operations, so we can understand
many others as being made up of interacting, semi-autonomous agents.

This recognition has led to the growth of interest in agents as a new para-
digm for software engineering. The aim of the AOSE-2000 workshop, held at the
ICSE-2000 conference in Limerick, Ireland, in June 2000, was to investigate the
credentials of agent-oriented software engineering, and to gain an understanding
of what agent-oriented software engineering might look like.

Some 32 papers were submitted to the workshop, and after refereeing, about
half were accepted for presentation. After the workshop, these papers were revi-
sed in light of the discussions at the workshop and, together with a selection of
invited papers (by Bussmann, Petrie, Rana, and Shehory), these revised papers
make up the volume you are now reading.

We are convinced that agents have a significant role to play in the future
of software engineering. This book offers insights into the issues that will shape
that future.

September 2000 Paolo Ciancarini
Michael Wooldridge

Organising Committee

Paolo Ciancarini (chair) University of Bologna, Italy
email ciancarini@cs.unibo.it

Michael Wooldridge (co-chair) University of Liverpool, UK
email M.J.Wooldridge@csc.liv.ac.uk

Programme Committee

Carlos Angel Iglesias Fernandez Spain
Dennis Heimbinger Germany
Michael Huhns USA
Nicholas Jennings UK
Liz Kendall Australia
Yannis Labrou USA
Jaeho Lee Korea
James Odell USA
Andrea Omicini Italy
Jan Treur The Netherlands
Jeffrey Tsai USA
Robert Tolksdorf Germany
Franco Zambonelli Italy

Topics of Interest

The workshop invited the submission of all papers covering aspects of agent-
oriented software engineering, but particularly the following:

– Methodologies for agent-oriented analysis and design
– Relationship of agent-oriented software to other paradigms (e.g., OO)
– UML and agent systems
– Agent-oriented requirements analysis and specification
– Refinement and synthesis techniques for agent-based specifications
– Verification and validation techniques for agent-based systems
– Software development environments and CASE tools for AOSE
– Standard APIs for agent programming
– Formal methods for agent-oriented systems, including specification and ve-

rification logics
– Engineering large-scale agent systems
– Experiences with field-tested agent systems
– Best practice in agent-oriented development
– Market and other economic models in agent systems engineering
– Practical coordination and cooperation frameworks for agent systems

We were particularly interested in papers that addressed to the following
questions:

1. The “OO mindset” contains about half a dozen key concepts – class, instance,
encapsulation, inheritance, polymorphism, and so on. In your view, what are
the key concepts in the “agent-oriented” mindset? If you had to identify just
one, then what would it be and why? How do we identify what should and
should not be modelled/implemented as an agent? What are the key features
you look for in a problem that suggests an agent-based solution?

2. Over the past few years, there has been an increasing trend in the object-
oriented community towards the development of “agent-like” features. Ex-
amples include distributed objects (CORBA, RMI), applets, mobile object
systems, and coordination mechanisms and languages. This trend is likely to
continue at least in the short term. Given this, how does an agent-oriented
software engineering view sit in relation to other software paradigms, in par-
ticular, object-oriented development? What are the key attributes of agent-
oriented development that make it unique and distinctive?

3. What is the impact of agent-oriented languages and tools on the software de-
velopment process? How can legacy software architectures be integrated with
agent- or multi-agent-oriented applications? Which specification, design, im-
plementation, maintenance, or documentation systems and strategies have
to be adopted in order to deal with agent-oriented issues?

4. Agent-based solutions are not appropriate to all applications. One of the keys
to the success of agent-oriented software engineering is therefore to identify
the application requirements that indicate an agent-based solution. What
are the key properties that indicate an agent-based approach is appropriate?

Contents

Part I: Conceptual Foundations

Agent-Oriented Software Engineering: The State of the Art 1
Michael Wooldridge and Paolo Ciancarini
Interaction-Oriented Programming . 29
Michael N. Huhns
Issues in Agent-Oriented Software Engineering . 45
Jürgen Lind
Agent-Based Software Engineering . 59
Charles Petrie
Software Architecture Attributes of Multi-agent Systems 77
Onn Shehory

Part II: UML for AOSE

Agent UML: A Formalism for Specifying Multiagent Software Systems 91
Bernhard Bauer, Jörg P. Müller, and James Odell
Agent-Oriented Modeling with Graph Transformation . 105
Ralph Depke, Reiko Heckel, and Jochen Malte Küster
Representing Agent Interaction Protocols in UML . 121
James Odell, H. Van Dyke Parunak, and Bernhard Bauer

Part III: Methodologies for AO Analysis and Design

On the Identification of Agents in the Design of Production Control Systems .
141
Stefan Bussmann, Nicholas R. Jennings, and Michael Wooldridge
Agent Software Engineering with Role Modelling . 163
Elizabeth A. Kendall
Designing Agent-Oriented Systems by Analysing Agent Interactions 171
Simon Miles, Mike Joy, and Michael Luck
SODA: Societies and Infrastructures in the Analysis and Design 185
of Agent-Based Systems
Andrea Omicini
A Modelling Approach for Agent Based Systems Design 195
Omer F. Rana

X Contents

An Overview of the Multiagent Systems Engineering Methodology 207
Mark F. Wood and Scott A. DeLoach
Security for Mobile Agents . 223
Nobukazu Yoshioka, Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi Honiden
Organizational Abstractions for the Analysis and Design 235
of Multi-agent Systems
Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge

Part IV: Reuse

Reuse and Abstraction in Verification: Agents Acting in 253
Dynamic Environments
Catholijn M. Jonker, Jan Treur, and Wieke de Vries

Part V: Applications and Experiences

Strategy Selection-Based Meta-level Reasoning for . 269
Multi-agent Problem-Solving
K. Suzanne Barber, David C. Han, and Tse-Hsin Liu
Introducing the Adaptive Agent Oriented Software Architecture 285
and Its Application in Natural Language User Interfaces
Babak Hodjat and Makoto Amamiya
Adding Extensible Synchronization Capabilities to the . 307
Agent Model of a FIPA-Compliant Agent Platform
Agostino Poggi and Giovanni Rimassa
Author Index . 323

	Agent-Oriented Software Engineering
	Preface
	Organization
	Topics of Interest
	Table of Contents

