Skip to main content

Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

  • Chapter
  • First Online:
Sequence Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1828))

Abstract

Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children (Burns, 1962; Freeman, 1914; Iacoboni et al., 1999). Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an inverse relation between curvature and speed. How are such complex movements learned through attentive imitation? Novel movements may be made as a series of distinct segments that may be quite irregular both in space and time, but a practiced movement can be made smoothly, with a continuous, often bell-shaped, velocity profile. How does learning of sequential movements transform reactive imitation into predictive, automatic performance?

Supported in part by the Defense Advanced Research Projects Agency and the Office of Naval Research (DARPA/ONR N00014-95-1-0409), and by the National Science Foundation (NSF IRI-97-20333).

Supported in part by the Defense Advanced Research Projects Agency and the Office of Naval Research (DARPA/ONR N00014-95-1-0409, ONR N00014-92-J-1309), and by the National Institutes of Health (NIH 1-R29-DC02952-01).

Acknowledgments: The authors wish to thank Robin Amos and Diana Meyers for their valuable assistance in the preparation of the manuscript and graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend, W., Bizzi, E., Morasso, P. (1982). Human arm trajectory formation. Brain. 105, 331–348.

    Article  Google Scholar 

  • Alston, J., Taylor, J. (1987). Handwriting: Theory, research, and practice. New York: Nichols.

    Google Scholar 

  • Andersen, R., Essick, G., Siegel, R. (1985). Encoding of spatial location by posterior parietal neurons. Science. 230, 456–458.

    Article  Google Scholar 

  • Andersen, R. (1995). Encoding of intention and spatial location in the posterior parietal cortex. Cerebral Cortex. 5, 457–469.

    Article  Google Scholar 

  • Arroyo-Anllo, E.M., Botez-Marquard, T. (1998). Neurobehavioral dimensions of olivoponto-cerebellar atrophy. Journal of Clinical and Experimental Neuropsychology. 20, 52–59.

    Article  Google Scholar 

  • Bannerman, D.M., Yee, B.K., Good, M.A., Heupel, M.J., Iversen, S.D., Rawlins, J.N. (1999). Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioral Neuroscience. 113, 1170–1188.

    Article  Google Scholar 

  • Bartha, G.T., Thompson, R.F., Gluck, M.A. (1991). Sensorimotor learning and the cerebellum. In M. Arbib, J. Ewert (Eds.). Visual structures and integrated functions. Berlin: Springer.

    Google Scholar 

  • Berardelli, A., Hallet, M., Rothwell, J.C., Agostino, R., Manfredi, M., Thompson, M., Thompson, P.D., Marsden, C.D. (1996). Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 119, 661–674.

    Article  Google Scholar 

  • Bernstein, N. (1967). The coordination and regulation of movements. London: Pergamon Press.

    Google Scholar 

  • Bizzi, E., Saltiel, P., Tresch, M. (1998). Modular organization of motor behavior. Zeitschrift fur Naturforschung [C]. 53, 510–7.

    Google Scholar 

  • Buchanan, T.S., Almdale, D.P.J., Lewis, J.L., Rymer, W.Z. (1986). Characteristics of synergic relations during isometric contractions of human elbow muscles. Journal of Neurophysiology. 56, 1225–1241.

    Google Scholar 

  • Bullock, D., Cisek, P., Grossberg, S. (1998). Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex. 8, 48–62.

    Article  Google Scholar 

  • Bullock, D., Fiala, J.C., Grossberg, S. (1994). A neural model of timed response learning in the cerebellum. Neural Networks. 7, 1101–1114.

    Article  MATH  Google Scholar 

  • Bullock, D., Grossberg, S. (1988a). The VITE model: A neural command circuit for generating arm and articulator trajectories. In J. Kelso, A. Mandell, M. Shlesinger (Eds.). Dynamic patterns in complex systems. Singapore: World Scientific.

    Google Scholar 

  • Bullock, D., Grossberg, S. (1988b). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review. 95, 49–90.

    Article  Google Scholar 

  • Bullock, D., Grossberg, S. (1991). Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science. 10, 3–53.

    Article  Google Scholar 

  • Bullock, D., Grossberg, S., Mannes, C. (1993). A neural network model for cursive script production. Biological Cybernetics. 70, 15–28.

    Article  MATH  Google Scholar 

  • Buonomano, D.V., Mauk, M.D. (1994). Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Computation. 6, 38–55.

    Article  Google Scholar 

  • Burns, P.C. (1962). Improving handwriting instruction in elementary schools. Minneapolis (pp. 45–46). Minneapolis, MN: Burgess Publishing Co.

    Google Scholar 

  • Caminiti, R., Genovesio, A., Marconi, B., Mayer, A.B., Onorati, P., Ferraina, S., Mitsuda, T., Giannetti, S., Squatrito, S., Maioli, M.G., Molinari, M. (1999). Early coding of reaching: Frontal and parietal association connections of parieto-occipital cortex. European Journal of Neuroscience. 11, 3339–3345.

    Article  Google Scholar 

  • Chapeau-Blondeau, F., Chauvet, G. (1991). A neural network model of the cerebellar cortex performing dynamic associations. Biological Cybernetics. 65, 267–279.

    Article  Google Scholar 

  • Chieffi, S., Allport, D.A. (1997). Independent coding of target distance and direction in visuospatial working memory. Psychological Research. 60, 244–250.

    Article  Google Scholar 

  • Coltz, J.D., Johnson, M.T.V., Ebner, T.J. (1999a). Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. The Journal of Neuroscience. 19, 1782–1803.

    Google Scholar 

  • Coltz, J.D., Johnson, M.T.V., Ebner, T.J. (1999b). Cerebellar Purkinje cell complex spike discharge during visuomotor arm tracking in primates: Relationships to movement parameters and comparisons to simple spike discharge. Society for Neuroscience Abstracts. 25, 372.

    Google Scholar 

  • Dagher, A., Owen, A.M., Boecker, H., Brooks, D.J. (1999). Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 122, 1973–1987.

    Article  Google Scholar 

  • Doyon, J., LaForce Jr., R., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., Bedard, P., Bedard, F., Bouchard, J. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia. 36, 625–641.

    Article  Google Scholar 

  • Ebner, T.J. (1998). A role for the cerebellum in the control of limb movement velocity. Current Opinion in Neurobiology. 8, 762–769.

    Article  Google Scholar 

  • Edelman, S., Flash, T. (1987). A model of handwriting. Biological Cybernetics. 57, 25–36.

    Article  Google Scholar 

  • Fiala, J., Grossberg, S., Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. The Journal of Neuroscience. 16, 3760–3774.

    Google Scholar 

  • Fowler, C., Saltzman, E. (1993). Coordination and coarticulation in speech production. Language and Speech. 36, 171–195.

    Google Scholar 

  • Freeman, F.N. (1914). The teaching of handwriting (pp. 83–84). Boston, MA: Houghton-Mifflin, The Riverside Press Cambridge.

    Google Scholar 

  • Freeman, J.A. (1969). The cerebellum as a timing device: an experimental study in the frog. In R. Llinas (Ed.). Neurobiology of cerebellar evolution and development, pp. 397–420. Chicago: American Medical Association.

    Google Scholar 

  • Fu, Q.G., Mason, C.R., Flament, D., Coltz, J.D., Ebner, T.J. (1997). Movement kinematics encoded in complex spike discharge of primate cerebellar Purkinje cells. Neuroreport. 8, 523–529.

    Article  Google Scholar 

  • Gellman, R., Gibson, A.R., Houk, J.C. (1985). Inferior olivary neurons in the awake cat: Detection of contact and passive body displacement. Journal of Neurophysiology. 54, 40–60.

    Google Scholar 

  • Georgopoulos, A.P., DeLong, M.R., Crutcher, M.D. (1983). Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. The Journal of Neuroscience. 3, 1586–1598.

    Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience. 2, 1527–1537.

    Google Scholar 

  • Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B., Massey, J.T. (1989). Mental rotation of the neuronal population vector. Science. 243, 234–236.

    Article  Google Scholar 

  • Georgopoulos, A.P., Taira, M., Lukashin, A. (1993). Cognitive neurophysiology of the motor cortex. Science. 260, 47–52.

    Article  Google Scholar 

  • Ghez, C. (1991). The Cerebellum. In E.R. Kandel, J.H. Schwartz, T.M. Jessel (Eds.). Principles of neural science, pp. 626–646. New York: Elsevier Science Publishers.

    Google Scholar 

  • Greer, K., Green, D. (1983). Context and motor control in handwriting. Acta Psychologica. 54, 205–215.

    Article  Google Scholar 

  • Grossberg, S., Merrill, J. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Cognitive Brain Research. 1, 3–38.

    Article  Google Scholar 

  • Grossberg, S., Merrill, J. (1996). The hippocampus and cerebellum in adaptively timed learning, recognition, and movement. Journal of Cognitive Neuroscience. 8, 257–277.

    Article  Google Scholar 

  • Grossberg, S., Paine, R. (2000) A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks. in press.

    Google Scholar 

  • Grossberg, S., Schmajuk, N. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks. 2, 79–102.

    Article  Google Scholar 

  • Hallett, M., Khoshbin, S. (1980). A physiological mechanism of bradykinesia. Brain. 103, 301–314.

    Article  Google Scholar 

  • Hertrich, I., Ackermann, H. (1995). Coarticulation in slow speech: Durational and spectral analysis. Language and Speech. 38, 159–187.

    Google Scholar 

  • Hollerbach, J.M., Flash, T. (1982). Dynamic interactions between limb segments during planar arm movement. Biological Cybernetics. 44, 67–77.

    Article  Google Scholar 

  • Hopfinger, J.B., Buonocore, M.H., Mangun, G.R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience. 3, 284–291.

    Article  Google Scholar 

  • Horak, F.B., Anderson, M.E. (1984a). Influence of globus pallidus on arm movements in monkeys, I. Effects of kainic acid-induced lesions. Journal of Neurophysiology. 52, 290–304.

    Google Scholar 

  • Horak, F.B., Anderson, M.E. (1984b). Influence of globus pallidus on arm movements in monkeys, II. Effects of stimulation. Journal of Neurophysiology. 52, 305–322.

    Google Scholar 

  • Iacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science. 286, 2526–2528.

    Article  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control (pp. 325–349). New York: Raven.

    Google Scholar 

  • Ito, M. (1991). The cellular basis of cerebellar plasticity. Current Opinion in Neurobiology. 1, 616–620.

    Article  Google Scholar 

  • Ito, M., Karachot, L. (1992). Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells. Neurosciences Research. 14, 27–38.

    Article  Google Scholar 

  • Jaffe, S. (1992). A neuronal model for variable latency response. In F.H. Eeckman (Ed.). Analysis and modeling of neural systems. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Jueptner, M., Frith, C.D., Brooks, D.J., Frackowiak, R.S., Passingham, R.E. (1997a). Anatomy of motor learning. II. Subcortical structures and learning by trial and error. Journal of Neurophysiology. 77, 1325–1337.

    Google Scholar 

  • Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S., Passingham, R.E. (1997b). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology. 77, 1313–1324.

    Google Scholar 

  • Jueptner, M., Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 121, 1437–1449.

    Article  Google Scholar 

  • Kalaska, J.F., Cohen, D.A.D., Prud’homme, M.J., Hyde, M.L. (1990). Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Experimental Brain Research. 80, 351–364.

    Article  Google Scholar 

  • Kawashima, R., Okuda, J., Umetsu, A., Sugiura, M., Inoue, K., Suzuki, K., Tabuchi, M, Tsukiura, T., Narayan, S.L., Nagasaka, T., Yanagawa, I., Fujii, T., Takahashi, S., Fukuda, H., Yamadori, A. (2000). Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. Journal of Neurophysiology. 83, 1079–1087.

    Google Scholar 

  • Kelso, J.A.S. (Ed.) (1982). Human motor behavior. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kretschmer, B.D., Fink, S. (1999). Spatial learning deficit after NMDA receptor blockade and state-dependency. Behavioural Pharmacology. 10, 423–428.

    Article  Google Scholar 

  • Lacquaniti, F., Terzuolo, C., Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica. 54, 115–130.

    Article  Google Scholar 

  • Lu, X., Hikosaka, O., Miyachi, S. (1998). Role of monkey cerebellar nuclei in skill for sequential movement. Journal of Neurophysiology. 79, 2245–2254.

    Google Scholar 

  • Moore, J.W., Desmond, J.E., Berthier, N.E. (1989). Adaptively timed conditioned responses and the cerebellum: A neural network approach. Biological Cybernetics. 62, 17–28.

    Article  Google Scholar 

  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research. 42, 223–227.

    Article  Google Scholar 

  • Morasso, P. (1986). Understanding Cursive Script as a Trajectory Formation Paradigm. In H. Kao, G. van Galen, R. Hoosain (Eds.). Graphonomics: Contemporary research in handwriting, pp. 137–167. New York: Elsevier Science Publishers.

    Google Scholar 

  • Morasso, P., Mussa-Ivaldi, F.A., Ruggiero, C. (1983). How a discontinuous mechanism can produce continuous patterns in trajectory formation and handwriting. Acta Psychologica. 54, 83–98.

    Article  Google Scholar 

  • Mussa-Ivaldi, F. (1988). Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neuroscience Letters. 91, 106–111.

    Article  Google Scholar 

  • Ohman, S. (1965). Coarticulation in VCV utterances: spectrographic measurements. Journal of the Acoustical Society of America. 39, 151–168.

    Article  Google Scholar 

  • Oscarsson, O. (1969). Termination and functional organization of the dorsal spinoolivocerebellar path. The Journal of Physiology (London). 200, 129–149.

    Google Scholar 

  • Ostry, D., Gribble, P., Gracco, V. (1996). Coarticulation of jaw movements in speech production: is context sensitivity in speech kinematics centrally planned? The Journal of Neuroscience. 16, 1570–1579.

    Google Scholar 

  • Perrett, S.P., Ruiz, B.P., Mauk, M.D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. The Journal of Neuroscience. 13, 1708–1718.

    Google Scholar 

  • Plamondon, R., Alimi, A. (1997). Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences. 20, 279–349.

    Article  Google Scholar 

  • Pleskacheva, M.G., Wolfer, D.P., Kupriyanova, I.F., Nikolenko, D.L., Scheffrahn, H., Dell’Omo, G., Lipp, H.P. (2000). Hippocampal mossy fibers and swimming navigation learning in two vole species occupying different habitats. Hippocampus. 10, 17–30.

    Article  Google Scholar 

  • Richer, F., Chouinard, M.J., Rouleau, I. (1999). Frontal lesions impair the attentional control of movements during motor learning. Neuropsychologia. 37, 1427–1435.

    Article  Google Scholar 

  • Sadato, N., Ibanez, V., Deiber, M.P., Campbell, G., Leonardo, M., Hallett, M. (1996). Frequency-dependent changes of regional cerebral blood flow during finger movements. Journal of Cerebral Blood Flow and Metabolism. 16, 23–33.

    Google Scholar 

  • Schillings, J., Meulenbroek, R., Thomassen, A. (1996). Limb segment recruitment as a function of movement direction, amplitude, and speed. Journal of Motor Behavior. 28, 241–254.

    Article  Google Scholar 

  • Schwartz, A.B., Moran, D.W. (1999). Motor cortical activity during drawing movements: Population representation during lemniscate tracing. Journal of Neurophysiology. 82, 2705–2718.

    Google Scholar 

  • Simpson, J.I., Wylie, D.R., De Zeeuw, C.I. (1996). On climbing fiber signals and their consequence(s). Behavioral and Brain Sciences. 19, 384–398.

    Google Scholar 

  • Soechting, J., Terzuolo, C. (1987). Organization of arm movements. Motion is segmented. Neuroscience. 23, 39–51.

    Article  Google Scholar 

  • Stelmach, G., Mullins, P., Teulings, H. (1984). Motor programming and temporal patterns in handwriting. In J. Gibbon, L. Allan (Eds.). Timing and Time Perception, Annals of the New York Academy of Sciences. 423, 144–157.

    Google Scholar 

  • Thomassen, A., Schomaker, L. (1986). Between-letter context effects in handwriting trajectories. In H. Kao, G. van Galen, R. Hoosain (Eds.). Graphonomics: Contemporary research in handwriting, pp. 253–272. New York: North-Holland: Elsevier Science Publishers.

    Google Scholar 

  • Thomassen, A., Teulings, H. (1985). Time, size and shape in handwriting: Exploring spatiotemporal relationships at different levels. In J. Michon, J. Jackson, (Eds.). Time, mind, and behavior, pp. 253–263. Berlin: Springer-Verlag.

    Google Scholar 

  • Turner, R.S., Anderson, M.E. (1997). Pallidal discharge related to the kinematics of reaching movements in two dimensions. Journal of Neurophysiology. 77, 1051–1074.

    Google Scholar 

  • Turner, R.S., Grafton, S.T., Votaw, J.R., Delong, M.R., Hoffman, J.M. (1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology. 80, 2162–2176.

    Google Scholar 

  • Turvey, M.T. (1990). Coordination. American Psychologist. 45, 938–953.

    Article  Google Scholar 

  • van Galen, G.P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science. 10, 165–191.

    Article  Google Scholar 

  • van Galen, G.P., Weber, J. (1998). On-line size control in handwriting demonstrates the continuous nature of motor programs. Acta Psychologica. 100, 195–216.

    Article  Google Scholar 

  • van Gemmert, A.W., Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E. (1999). Parkinson’s disease and the control of size and speed in handwriting. Neuropsychologia. 37, 685–694.

    Article  Google Scholar 

  • Vindras, P., Viviani, P. (1998). Frames of reference and control parameters in visuomanual pointing. Journal of Experimental Psychology: Human Perception and Performance. 24, 569–591.

    Article  Google Scholar 

  • Waite, J.J., Chen, A.D., Wardlow, M.L., Wiley, R.G., Lappi, D.A., Thal, L.J. (1995). 192 immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells. Neuroscience. 65, 463–476.

    Article  Google Scholar 

  • Wann, J., Nimmo-Smith, I., Wing, A. (1988). Relation between velocity and curvature in movement: equivalence and divergence between a power law and a minimum-jerk model. Journal of Experimental Psychology: Human Perception and Performance. 14, 622–637.

    Article  Google Scholar 

  • Wann, J.P., Nimmo-Smith, I. (1990). Evidence against the relative invariance of timing in handwriting. The Quarterly Journal of Experimental Psychology. 42A, 105–119.

    Google Scholar 

  • Wright, C.E. (1993). Evaluating the special role of time in the control of handwriting. Acta Psychologica. 82, 5–52.

    Article  Google Scholar 

  • Zhou, T.L., Tamura, R., Kuriwaki, J., Ono, T. (1999). Comparison of medial and lateral septal neuron activity during performance of spatial tasks in rats. Hippocampus. 9, 220–234.

    Article  Google Scholar 

  • Zipser, D. (1986). A model of hippocampal learning during classical conditioning. Behavioral Neuroscience. 100, 764–776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grossberg, S., Paine, R.W. (2000). Attentive Learning of Sequential Handwriting Movements: A Neural Network Model. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44565-X_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41597-8

  • Online ISBN: 978-3-540-44565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics