Skip to main content

On Augmenting Reactivity with Deliberation in a Controlled Manner

  • Conference paper
  • First Online:
Balancing Reactivity and Social Deliberation in Multi-Agent Systems (BRSDMAS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2103))

Abstract

We argue that a reactive agent obeying the requirement of predictability imposed by a hard-real-time application domain cannot be equipped with an arbitrarily powerful deliberation capability as this would jeopardize the predictability of the agent’s behaviour. Therefore such augmentation should be performed in a principled, controlled manner. We illustrate our line of thought with the example of Generic Layered Architecture used for creating reactive agents acting in dynamic environments requiring real-time responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Albus, H. G. McCain, and R. Lumia. NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM). NIST Tecnical Note 1235, National Institute of Standards and Technology, Robot Systems Division, Center for Manufacturing Engineering, Gaithersburg, MD 20899, 1989.

    Google Scholar 

  2. R. C. Arkin. Behaviour-Based Robotics. MIT Press, 1998.

    Google Scholar 

  3. R. P. Bonasso. Integrating reaction plans and layered competences through synchronous control. In Proceedings of the Twelvth International Joint Conference on Artificial Intelligence, Sydney, pages 1225–1231. Morgan Kaufman, 1991.

    Google Scholar 

  4. V. Botti, C. Carrascosa, V. Julian, and J. Soler. Modelling agents in hard real-time environments. In Proc. MAAMAW-99, pages 63–76. 1999.

    Google Scholar 

  5. J. H. Connell. SSS: A hybrid architecture applied to robot navigation. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pages 2719–2724, Nice, France, May 1992.

    Google Scholar 

  6. T. Dean and M. Boddy. An Analysis of Time-Dependent Planning. Artificial Intelligence, pages 49–54, 1988.

    Google Scholar 

  7. P. Doherty, G. Granlund, K. Kuchcińnski, E. Sandewall, K. Nordberg, E. Skarman, and J. Wiklund. The WITAS unmanned aerial vehicle project. In Proceedings ECAI-00, Berlin, Germany, 2000.

    Google Scholar 

  8. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhD thesis, University of Cambridge, Computer Laboratory, Cambridge CB2 3QG, England, November 1992.

    Google Scholar 

  9. R. J. Firby. Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Department of Computer Science, Yale University, 1989.

    Google Scholar 

  10. M. Fisher and C. Ghidini. Agents playing with dynamic resource bounds. In M. Hannebauer, J. Wendler, and E. Pagello, editors, Proc. of the ECAI-00 Workshop on Balancing Reactivity and Social Deliberation in Multi-Agent Systems, 2000.

    Google Scholar 

  11. D. Gabbay. Labelled Deductive Systems, Volume I. Oxford University Press, 1996.

    Google Scholar 

  12. E. Gat. Reliable Goal-Directed Reactive Control of Autonomous Mobile Robots. PhD thesis, Virginia Politechnic Institute and State University, 1991.

    Google Scholar 

  13. E. Gat. Integrating Planning and Reacting in a Heterogenus Asynchronous Architecture for Controlling Real-World Mobile Robots. In Proceedings AAAI-92, pages 809–816. AAAI Press, 1992.

    Google Scholar 

  14. B. Hayes-Roth. Architectural Foundations for Real-Time Performance in Intelligent Agents. Journal of Real-Time Systems, 2:99–125, 1990.

    Article  Google Scholar 

  15. H. Hexmoor, M. Huber, J. P. Müller, J. Pollock, and D. Steiner. On the evaluation of agent architectures. In [19], pages 106–116.

    Chapter  Google Scholar 

  16. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Control structures of rule-based agent languages. In [40], pages 381–396.

    Chapter  Google Scholar 

  17. Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence. Morgan Kaufman, 1993.

    Google Scholar 

  18. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

    Article  Google Scholar 

  19. N. R. Jennings and Y. Lespńerance, editors. Intelligent Agents VI, Agent Theories, Architectures and Languages, volume LNAI 1757 of LNCS. Springer, 2000.

    MATH  Google Scholar 

  20. R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189–211, 1990.

    Article  MATH  Google Scholar 

  21. J. Kvarnström, P. Doherty, and P. Hasslum. Extending TALplanner with concurrency and resources. In Proceedings ECAI-00, Berlin, Germany, August 2000.

    Google Scholar 

  22. J. Lee. Reactive-system approaches to agent architectures. In [19], pages 132–146.

    Chapter  Google Scholar 

  23. M. Lin. Formal Analysis of Reactive Rule-based Programs. Licentiate thesis, Linköping University, 1997. Linköping Studies in Science and Technology, Thesis No 643.

    Google Scholar 

  24. M. Lin. Analysis and Synthesis of Reactive Systems: A Generic Layered Architecture Perspective. PhD thesis, Department of Computer Science, Linköping University, 1999. Linköping Studies in Science and Technology, Dissertation No 613.

    Google Scholar 

  25. M. Lin. Synthesis of control software in a layered architecture from hybrid automata. In F. W. Vaandrager and J. H. van Schuppen, editors, Hybrid Systems: Computation and Control, LNCS 1569, pages 152–164. Springer-Verlag, 1999.

    Chapter  Google Scholar 

  26. M. Lin. Timing analysis of PL programs. In Proc. 24th IFAC/IFIP Workshop on Real-Time Programming, Schloss Dagstuhl, Germany, 1999.

    Google Scholar 

  27. M. Lin and J. Malec. Timing analysis of RL programs. Control Engineering Practice, 6:403–408, 1998. Also in: Real-Time Programming 1997, M. Maranzana (ed.), Pergamon Press, 1997.

    Google Scholar 

  28. M. Lin and J. Malec. Control of a manufacturing cell using a generic layered architecture. In Proc. Int. Workshop on Robot Motion and Control, Kiekrz, Poland, 1999.

    Google Scholar 

  29. J. Malec, M. Morin, and U. Palmqvist. Driver support in intelligent autonomous cruise control. In Proceedings of the IEEE Intelligent Vehicles Symposium’94, pages 160–164, Paris, France, October 1994. IEEE.

    Google Scholar 

  30. J. Malec. Applied knowledge representation. CC-AI: The Journal for the Integrated Study of Artificial Intelligence, Cognitive Science and Applied Epistemology, 9(1):9–41, 1992.

    MathSciNet  Google Scholar 

  31. J. Malec. On implementing behaviours using a three-layered architecture. In A. Borkowski and J. L. Crowley, editors, Proceedings of the 2nd International Symposium on Intelligent Robotic Systems, pages 62–69, Grenoble, France, July 1994.

    Google Scholar 

  32. J. Malec. A unified approach to intelligent agency. In [47], pages 233–244.

    Google Scholar 

  33. M. Mesarovic, D. Macko, and Y. Takahara. Hierarchical Multilevel Systems Theory. Academic Press, New York, 1970.

    MATH  Google Scholar 

  34. M. Morin. Predictable cyclic computations in autonomous systems: A computational model and implementation. Licentiate thesis 352, Department of Computer and Information Sciences, Linköping University, 1993.

    Google Scholar 

  35. M. Morin. PLCL — Process Layer Configuration Language. Technical Report LAIC-IDA-91-TR10, Linköping University, 1991.

    Google Scholar 

  36. M. Morin. RL: An embedded rule-based system. Technical Report LAIC-IDA-94-TR2, Linköping University, 1994.

    Google Scholar 

  37. M. Morin, S. Nadjm-Tehrani, P. Österling, and E. Sandewall. Real-time hierarchical control. IEEE Software, 9(5): 51–57, September 1992.

    Article  Google Scholar 

  38. J. P. Müller. The right agent (architecture) to do the right thing. In Müller et al. [40], pages 211–225.

    Chapter  Google Scholar 

  39. J. P. Müller, M. Pischel, and M. Thiel. A pragmatic approach to modeling autonomous interacting systems — preliminary report. In [47], pages 226–240.

    Google Scholar 

  40. J. P. Müller, M. P. Singh, and A. S. Rao, editors. Intelligent Agents V, Agent Theories, Architectures and Languages, volume LNAI 1555 of LNCS. Springer, 1999.

    MATH  Google Scholar 

  41. D. J. Musliner. CIRCA: The Cooperative Intelligent Real-Time Control Architecture. PhD Thesis, The University of Michigan, 1993.

    Google Scholar 

  42. A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning systems. In IJCAI-93 [17], pages 318–324.

    Google Scholar 

  43. S. J. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of Artificial Intelligence Research, 2:575–609, 1995.

    MATH  Google Scholar 

  44. E. Sandewall. Features and Fluents. Oxford University Press, 1994.

    Google Scholar 

  45. J. A. Stankovic. Real-time computing systems: The next generation. In IEEE Tutorial on Hard Real-Time Systems, pages 14–37. Computer Society Press, 1988.

    Google Scholar 

  46. W. Wobcke. On the correctness of PRS agent programs. In Jennings and Lespéerance [19], pages 42–56.

    Chapter  Google Scholar 

  47. M. J. Wooldridge and N. R. Jennings, editors. Intelligent Agents, Agent Theories, Architectures and Languages, volume LNAI 890 of LNCS. Springer, 1995.

    Google Scholar 

  48. S. Zilberstein and S. J. Russell. Anytime sensing, planning and action: A practical model for robot control. In IJCAI-93 [17], pages 1401–1407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malec, J. (2001). On Augmenting Reactivity with Deliberation in a Controlled Manner. In: Balancing Reactivity and Social Deliberation in Multi-Agent Systems. BRSDMAS 2000. Lecture Notes in Computer Science(), vol 2103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44568-4_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44568-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42327-0

  • Online ISBN: 978-3-540-44568-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics