Skip to main content

Scientific Visualization - Methods and Applications -

  • Chapter
  • First Online:
Informatics

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2000))

Abstract

Scientific Visualization is currently a very active and vital area of research, teaching and development. The success of Scientific Visualization is mainly due to the soundness of the basic premise behind it, that is, the basic idea of using computer-generated pictures to gain information and understanding from data (geometry) and relationships (topology). This is an extremely intiutive and very important concept which is having a profound and wide spread impact on the methodology of science and engineering. In this survey we are concentrating on three main research areas in Scientific Visualization - Intelligent Visualization Systems - Visualization of Vector- and Tensorfields - Augmented Reality Simulation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronov A. A., Leontovich E. A., Gordon I. I., and A. G. Maier. Qualitative Theory of Second-Order Dynamic Systems. Israel Program for Scientific Translation, Jerusalem, 1973.

    Google Scholar 

  2. R.T. Azuma. A survey of augmented reality. Teleoperators and Virtual Environments, 6(4):355–385, August 1997.

    Google Scholar 

  3. M. Bajura, H. Fuchs, and R. Ohbuchi. Merging virtual reality with the real world: Seeing ultrasound imagery within the patient. In Proceedings of SIGGRAPH’ 92, pages 203–210. Computer Graphics 26, 2, July 1992.

    Article  Google Scholar 

  4. M. Bajura and U. Neumann. Dynamic registration correction in videobased augmented reality systems. IEEE Computer Graphics and Applications, 5(15), 1995.

    Google Scholar 

  5. M. S. Chong, A. E. Perry, and B. J. Cantwell. A General Classification of Three-Dimensional Flow Fields. Physics of Fluids A, 2(5):765–777, 1980.

    Article  MathSciNet  Google Scholar 

  6. C. Walsh C and P. Wilde. Practical Echocardiography. Oxford University Press, London, 1999.

    Google Scholar 

  7. U. Dallmann. Topological Structures of Three-Dimensional Flow Separations. Technical Report 221–82 A 07, Deutsche Forschungs-und Versuchsanstalt für Luft-und Raumfahrt, 1983.

    Google Scholar 

  8. T. Delmarcelle and H. Hesselink. The Topology of Symmetric, Second-Order Tensor Fields. In IEEE Visualization’ 94, pages 140–147, Tysons Corner, VA, 1994.

    Google Scholar 

  9. R. Erbel, G.D. Kneissl, P. Schweizer G.D, H.J. Lambertz, and R. Engberding. Qualitätsleitlinien in der Echokardiographie. Zeitschrift fü Kardiologie, 86:387–403, 1997.

    Google Scholar 

  10. W.E.L. Grimson, S.J. Ettinger, P.L. White, T. Gleason, and et. al:. Evaluating and validating an automated registration system for enhanced reality visualization in surgery. In Proceedings of Computer Vision, Virtual Reality, and Robotics in Medicine’ 95, pages 3–12, April 1995.

    Google Scholar 

  11. A. Globus, C. Levit, and T. Lasinski. A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. In IEEE Visualization’ 91, pages 33–40, San Diego, 1991.

    Google Scholar 

  12. J. L. Helman and L. Hesselink. Surface Representations of Two-and Three-Dimensional Fluid Flow Topology. In G. M. Nielson and B. Shriver, editors, Visualization in scientific computing, pages 6–13, Los Alamitos, CA, 1990.

    Google Scholar 

  13. C. Krishnaswamy, A.J. D’Adamo, and C.M. Sehgal. Three dimensional reconstruction of intravascular ultrasound images. InP.G. Yock J.M. Tobis, editor, Intravascular Ultrasound Imaging, 1992.

    Google Scholar 

  14. D. N. Kenwright, C. Heinze, and C. Levit. Feature Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, April-June 1999.

    Article  Google Scholar 

  15. M. J. Lighthill. Attachment and Separation in Three Dimensional Flow. In Rosenhead L., editor, Laminar Boundary Layers II, pages 72–82. Oxford University Press, Oxford, 1963.

    Google Scholar 

  16. K. Rosenfield, D.W. Losordo, K. Ramaswamy, J.O. Pastore, E. Langevin, S. Razvi, B.D. Kosowski, and J.M. Isner. Three dimensional reconstruction human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation, 84:1938–1956, 1991.

    Google Scholar 

  17. J.R. Roedlandt, C. Di Mario, N.G. Pandian, L. Wenguang, L. Keane, C.J. Slager, P.J. De Feyter, and P.W. Serrius. Three dimensional reconstruction of intracoronary ultrasound images. Circulation, 90, 1994.

    Google Scholar 

  18. G. Sakas and M. Grimm. 4d/5d echocardiographic data visualization. In Proceedings of the Third Korea-Germany Joint Workshop on Advanced Medical Image Processing, Seoul, Korea, 13–16, August 1998.

    Google Scholar 

  19. G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, April-June 1998.

    Article  Google Scholar 

  20. A. State, M.A. Livingston, G. Hirota, W.F. Garrett, M.C. Whitton, H. Fuchs, and E.D. Pisano. Techniques for augmented reality systems: Realizing ultrasound-guided needle biopsies. In Proceedings of SIGGRAPH’ 96, pages 439–446, August 1996.

    Google Scholar 

  21. O. Schweikard and F. Metzger. Standardisierte Befunderfassung in der Echokardiographie mittels Echobefundsystem. to be published in Zeitschrift für Kardiologie.

    Google Scholar 

  22. X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2d vector fields. In IEEE Visualization 2000, pages 359–366, Los Alamitos, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagen, H., Ebert, A., van Lengen, R.H., Scheuermann, G. (2001). Scientific Visualization - Methods and Applications -. In: Wilhelm, R. (eds) Informatics. Lecture Notes in Computer Science, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44577-3_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44577-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41635-7

  • Online ISBN: 978-3-540-44577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics