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Abstract. In 1984, H.C. Williams introduced a public key cryptosys-
tem whose security is as intractable as factorization. Motivated by some
strong and interesting cryptographic properties of the intrinsic struc-
ture of this scheme, we present a practical modification thereof that has
very strong security properties. We establish, and prove, a generaliza-
tion of the “sole-samplability” paradigm of Zheng-Seberry (1993) which
is reminiscent of the plaintext-awareness concept of Bellare et. al. The
assumptions that we make are both well-defined and reasonable. In par-
ticular, we do not model the functions as random oracles. In essence,
the proof of security is based on the factorization problem of any large
integer n = pq and Canetti’s “oracle hashing” construction introduced
in 1997. Another advantage of our system is that we do not rely on any
special structure of the modulus n = pg, nor do we require any specific
form of the primes p and ¢. As our main result we establish a model
which implies security attributes even stronger than semantic security
against chosen ciphertext attacks.

Keywords: Chosen Ciphertext Security, Plaintext Awareness, (Weak)-
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1 Introduction and Summary

1.1 Provable Security and Attack Models

A desirable property of any cryptosystem is a proof that breaking it is as diffi-
cult as solving a computational problem that is widely believed to be difficult.
A cryptographic scheme is provably secure if an attack on the scheme implies
an attack on the underlying primitives it employs. While RSA is undoubtedly
the most well-known and widely used public-key cryptosystem, it is not known
if breaking RSA is as difficult as factoring (cf. [6]). A variety of factorization
equivalent RSA modifications have been proposed which are essentially based
on the same idea of unambiguous decryption (cf. also [I8]). The sender can ma-
nipulate the decoder to decrypt a ‘wrong message’ which then can be used to
factorize the modulus. Because of this problem, all these systems are vulnerable
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to a chosen ciphertext attack (CCA). Under such an attack the adversary selects
the ciphertext and is then given the corresponding plaintext. The strongest such
attack is known as the adaptive CCA [19], in which an attacker can access a de-
cryption oracle on arbitrary ciphertexts (except for the target ciphertexts which
he is challenged with).

It is known that plain RSA can broken under a CCA [21], which allows total
recovery of a complete plaintext, resp. generation of a complete signature on
an entire message. But RSA is also vulnerable to attacks that compromise the
semantic security of the scheme. An adaptive CCA can successfully be mounted
on some randomized versions of RSA (PKC # 1), when only partial information
of the plaintext is leaked [5].

The underlying goal of any encryption scheme is to achieve semantic secu-
rity (informally, ‘whatever can be computed by an attacker about the plaintext
given an object ciphertext, can also be computed without the object ciphertext’)
under strong attack models (such as CCA) under well-specified assumptions and
primitives.

1.2 The General Goal of this Paper

The two most often applied cryptographic primitives are the Diffie-Hellman (DH)
problem and the factorization problem. There are a number of systems secure
against CCA which are based on the DH problems, e.g., on the decisional DH
and the existence of a collision resistant hash function [I0], on the decisional DH
in the random oracle model (ROM) [22], and on the computational DH in the
ROM [IIT7]. Also, suggestions have been made which are based on various new
primitives (cf. e.g. [17]), but no encryption scheme secure against CCA has been
published yet which utilizes the factorization utility of arbitrary numbers in a
model without random oracles. Very recently, proposals have been made [16l/17]
of encryption schemes whose security rely on the ROM, and additionally require
the very specific structure of the modulus, n = p?q.

Most of the above methods require random oracles. Although the ROM is a
convenient setting, we do not have a general mechanism for transforming pro-
tocols that are secure in the ROM into protocols that are secure in real life.
Actually, it is proved [8] that there are schemes which are secure in the ROM,
but have no secure implementation in the “real world”. Moreover, we do not
even know how to specify the properties for a transformation from the ROM
into the real world. A natural goal thus is to design a chosen ciphertext secure
system which is practical and proven secure under well defined intractability
assumptions.

On the other hand, although it is not know to what extend there exist algo-
rithms that can exploit a special structure of the modulus for more efficiently
factoring n, it would be desirable to establish a scheme based on the general
factorization primitive n = pq with p and ¢ arbitrarily. The only factorization
equivalent RSA modification known that does not require a specific form of the
modulus, nor any special structure of the primes, is the Williams scheme [23].
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Our proposed suggestion will consist of enhancing this scheme in order to obtain
very strong cryptographic properties.

Decrypting the Williams system is provably equivalent in difficulty to factor-
ing n = pq. However, it is vulnerable to a CCA. The main result of the paper is to
enhance this system. We will establish some new model which yields properties
even stronger than security against CCA.

1.3 Previous Methods for Proving CCA Security

There are several methods for proving security against adaptive CCA [,

Typically, in the ROM, semantic security against CCA is achieved by proving
semantic security against chosen plaintext attacks (CPA) [2], and successively
proving that the system is plaintext aware [2]. In the first definition given in
[B] this basically meant that an adversary cannot produce a ciphertext without
knowing (‘being able to compute’) the corresponding plaintext.

The original definition required some modification. This is due to the way
as how a valid ciphertextﬁ is created. If its creation involves some internal RO-
hash queries, the adversary that produced the ciphertext would not be able to
compute the underlying plaintext [2]. The refined definition given in [2] involves
some plaintext extractor which serves as a simulator of the decryption oracle.
The extractor is required to find the underlying plaintext to a ciphertext without
making any queries to the decryption oracle. A necessary requirement for the
plaintext extractor to be successful is that the generation of the ciphertext only
involved direct RO-queries. In that case, decryption can be simulated by the
extractor, otherwise, it cannot. The fact that there exist some valid ciphertexts
that cannot be decrypted by the simulator immediately leads to a smaller success
rate of any CCA-attacker and to some loss of ‘advantage’ [2].

For practical realisations [II7] the problem firstly consists in showing that
such a plaintext extractor exists. Secondly, several probability estimates are
necessary to ensure that the failure probability of the simulator remains small
enough.

Moreover, plaintext awareness (PA), as defined by Bellare et. al. has only
been defined in the ROM. In [2] it is argued, why this concept would not make
sense in the standard model.

A more direct approach for proving security against CCA was done in [T0].
It is shown that if their scheme could be broken under a CCA then this would
lead to some method for breaking the underlying primitive (the decisional DH
problem).

In [20] it was recently shown that under certain settings security against
adaptive CCA is not even enough. Schnorr-Jakobsson demonstrate new and
reasonable attack models (‘one-more attack’) which cannot be covered by CCA

1 'We do not consider the multi user setting, as this would require additional features
going beyond the scope of this paper

a valid ciphertext is usually understood as one that passes the validity test and hence
does not get rejected by the decryption oracle

2
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security. Indeed, they show that the most important and general attack models
can be captured by some sort of proof of knowledge, which is also called plaintezt
awareness in [20] but is different from the definition of PA given in [2]. The
PA in [20] also requires that any party that creates a valid ciphertext, must
‘know’ the secret parameters involved in its creation (for details we refer to
[20]). Although the arguments of [20] clearly demonstrate that security against
CCA is not sufficient, their method requires the ROM as well and thus cannot
be applied to our proposed scheme.

The idea of incorporating some proof of knowledge in proving security against
CCA goes back to [TT[I5]. Although these suggestions do not require the ROM,
they are quite impractical as they rely on general and expensive constructions
which make these cryptosystems difficult to realize in practice.

The first practical approach for establishing security against adaptive CCA
without the ROM was proposed by Zheng-Seberry already in 1993 [26]. They
require their encoding functions f to be sole-samplable. Basically, this property
means that there is no other way to generate any valid ciphertext than to first
choose a plaintext x and evaluate f at x. Thus, an adversary cannot generate a
new valid ciphertext without starting from a known plaintext.

The underlying idea is obvious. If the party that generates a valid cipher-
text must know the corresponding plaintext then it cannot abuse the system
as it must have known the result of any decryption-query to begin with. Sole-
samplability is one of the strongest notions of security that exists. It would au-
tomatically imply security against non-malleability [I1], against adaptive CCA,
and also against the one more attack. Additionally, it does not require the ROM.

The problem with the Zheng-Seberry suggestion is that they were not able
to prove that their functions are indeed sole-samplable. They merely base the
proof of CCA security on this assumption. Although their concept seems to be
the strongest the difficulty is to actually achieve it.

1.4 The New Method and Our Main Results

We suggest that the underlying primitive to be chosen in the standard model
must be some form of sole-samplability. Obviously the most natural and impor-
tant concept to be established is some ‘proof of knowledge’, as plaintext aware-
ness in the ROM, or the Schnorr-Jakobsson plaintext awareness in the generic
model. Our main results are the following.

— We introduce a comparable notion to the sole-samplability paradigm of
Zheng-Seberry. Although the proposed concept is slightly weaker than theirs,
it has the advantage that all the established claims can rigorously be proved.
We call an encryption scheme weak-sole-samplable if the following con-
ditions hold. If C is a wvalid ciphertext then it either has to be the result
of an encryption query, or it has to be the result of some specific function
(algorithm) F. In the latter case, this F' must be explicitly known, and ad-
ditionally, it must be possible to efficiently generate the underlying plaintext
with publicly available information only.
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— This means, that if there do exist ways to find a valid ciphertext other than
running the encryption oracle, then all these other ways must be explicitly
known. Also, whenever a valid ciphertext was generated by such an (explicitly
known) alternative method, then it must be possible to find the corresponding
plaintext, without having to make any decryption-oracle queries.

— The advantages of this concept are obvious. If all the ways of establishing
valid ciphertexts are known, and if none of these cases is possible apart from
knowing the underlying plaintext, then the behaviour of any adversary is
the same as in the Zheng-Seberry model, which implies extremely strong
security attributes. The adversary cannot obtain more information via any
decryption-oracle queries, as he must have known the answers to begin with.

— Another advantage is that this eliminates the need for a simulator and addi-
tionally, the necessity for establishing the failure probability of any plaintext
extractor (simulator). Any adversary that creates a valid ciphertext, is al-
ways successful in finding the corresponding plaintext. There are not any
valid ciphertext that can be created without the plaintext.

— We establish the prove of ‘weak-sole-samplability’ on well-formulated and
explicit properties. We only require Canetti’s oracle hash functions and the
general factorization primitive. To the best of our knowledge this is the first
proposal that does not require any structure of the modulus, nor any special
form of the primes. Additionally, the scheme remains quite practical and can
efficiently be realized by means of very rapid methods for the evaluation of
combined Lucas sequences [24]25].

From the RSA family, the only factorization equivalent scheme for arbitrary
p,q in the modulus n = pq is the Williams scheme. This system has a num-
ber of very interesting properties. Indeed, it was a better understanding of the
intrinsic structure of this scheme that lead us to establish the new model and
the enhanced security properties. Since ‘weak-sole-samplability’ is strongly based
on underlying properties of the Williams system, we present it in terms of this
particular system.

Qutline: After a short description of the Williams scheme and some essential
properties thereof (section[), we present the proposed enhanced version (section
B). Semantic security against CPA will be derived in section Bl In section
we finally prove the property ‘weak-sole-samplability’.

2 Some Preliminaries

2.1 The Underlying Williams Scheme

Let o, @ be the distinct roots of 22 — Px 4+ Q for P,Q € Z with Q # 0 and
discriminant D = P2 — 4Q. Then the Lucas sequences of the first and second
kind of degree k, are defined by Ux(P,Q) = “;:Ek and Vi(P,Q) = o* +a*,

«@
respectively. It follows that these are sequences of integers that fulfill a number

of interesting identities and arithmetical properties [25].




6 Siguna Miiller

Williams [23] utilizes the Lucas sequences for the special case where P = 2a,
and @ = 1. Then, if p is an odd prime, one obtains the fundamental congru-
ence aP~(P/P) = gp—(P/P) = 1 mod p. Analogously as in Rabin’s case, the ba-
sis of the system is the congruence aP=(P/P)/2 = g=(P/P)/2 = 41 mod p.
Williams develops a method to specify the correct signs. When working mod-
ulo n = pq, and for e,d the public and private key, respectively, he obtains
a?? = @2 = +o mod n. This then establishes the equivalence between de-
cryption and factoring [23].

Let n = pq, where p and ¢ are two large primes. Further, let s,¢ € Z), be

chosen such such that p = — (%) mod 4 and g = — (g) mod 4, ged(s?—¢,n) =1

and (827:0) = —1. In the following w € Z,, is assigned the role of the message

to be encrypted.
Let the public encryption key e and the secret decryption key d with
ged(e, (p+1)(g+ 1)) = 1 be determined according to ed = 1 mod m, where

m = w. The numbers n, e, c, s constitute the Public Key, whereas
the numbers p,q,m,d are kept secret. Throughout the paper, let b; = 1, if

(“ﬂT—) =1, and by = 1, if (ML—) -1

Suppose ged(w? — ¢,n) = 1 and denote a = a(w),b = b(w) mod n, and
a = a(w) = a+ by/c mod n, where

forby=1: a=2tc b= 22 modn,
_ EUwQJrcc)(52+c)+lics11)C _ 2s(w?4c)+2w(s>+c) (1)
forby =—-1: a= WP =0 b= =0 ("—0) mod n.
Define the sequences X;(a) = L‘gai = 7%(22“’1)7 and Y;(a,b) = bo‘;:gi =

bUi(Qa, 1).

In order to minimize problems concerning the existence of the above multi-
plicative inverses mod n (cf. [T4]) it is preferable to work with a slightly modified
version of the original scheme. In the following we will exclusively be applying
this modification which essentially consists of reversing numerator and denomi-
nator of the original encryption function X, (a)/Ye(a,b) mod n of [23] and adapt-
ing the decryption scheme.

Williams’ Encryption: The first step of the encryption process consists of
calculating a(w), b(w) from the message w by means of [Il). Then w is encoded

* Y. (a(w), b(w))

Xe(a(w))
The cryptogram C' to be transmitted is the triple [E(w), by, bs], where by is
defined via %) as above and by = a(w) mod 2, by € {0,1}.

E(w) = mod n.

3 Tt turns out that the quantities a(w) and b(w) for both cases by = 1 and —1 can be
comprised into a more comprehensive formula. It can easily be shown that for ¢ and b

~2 0 A
as above, a = a(w) = 23 mod n, b= b(w) = 3% mod n, where & = w mod n,
ws+c

if by =1, and w = mod n, if by = —1.

w—+s
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Williams’ Decryption. Upon receiving C the receiver firstly calculates the

_ 14+E(w)%c _  2E(w)

values ag = =B ()% mod n, and by = T=B(w)%e

The second step consists of determining o = (—1) and a(w) and
b(w) by means of a(w) = 0 X4(ap) mod n and b(w) = oYy(ag, bg) mod n.

Finally, the message w can be retrieved from a(w) and b(w) via

mod n.
bo—Xa(ao)

a(blg;)rl mod n, if by = 1, (2)
w =
- slaWD) sod , if by = 1,

provided fi ged(b(w),n) = 1 for by = 1, and ged(a(w) + 1 — sb(w),n) = 1 for
by = —1.

Remark 1. By utilizing efficient methods for the combined evaluation of the
Lucas sequences [24I25], it can be shown that the Williams scheme requires
about twice as many multiplications as RSA, with additionally two multiplicative
inverses modulo n for both encryption and decryption.

2.2 The Williams Scheme Under a CCA

Definition 1. Let o’ (w) and b'(w) be chosen such that o’ (w), b'(w) correspond
to a(w),b(w) for the (wrong) case bj = —by.

Further denote the ‘false encryption of w’ by E'(w) = W
that is defined by following the formulas of the above encryption routine with

respect to by = —by (rather than by).

mod n,

As with the Rabin scheme, the equivalence of decryption and factorization
gives rise to a CCA [23|. One can even show the following [14].

Proposition 1. - If (%) =1 or —1 then E'(w) = E(z) mod n and b} (w)
= b1(2). Then z = D(E(z)) mod n where the parameters for the decryption
routine are by (w) and by. Then ged(w — z,n) gives the factorization of n.

— For (%) = —1 and E'(w) = E(z) mod n, the problem of finding a(z)
for a known o' (w) respectively w (and, similarly for b(z)) is computationally
equivalent to the problem of factorizing n.

— If there exists an algorithm for retrieving +a(w) mod n from E(w) (where
both values correspond to the same by ) then there exists an efficient algorithm
for factorizing n.

2.3 Some Interesting Properties

Proposition 2. Let by be fized and E(w) as well as a(w) be given. Then there
s an efficient algorithm for evaluating the underlying message w.

4 Tt was shown in [14] that the number of messages not fulfilling these gcd-conditions
is negligible.
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Proof. For establishing this result we adopt the ideas of the attack developed in
[1912]. Let A =a(w) — 1= 23 and B = 2A~! 4+ 1. Then @?* = c¢B. We may
assume that A~ mod n exists.

We now consider the extension R = Z[z]/(x? — ¢B,n), i.e. the elements of R
are polynomials of degree 1 at most with coefficients modulo n. All arithmetic
operations (addition, multiplication, division) over R can be done without the
knowledge of the factorization of n (where we assume that practically division is
always possible). We now define a mapping ¢ : R +— Z,, by ¢(kx+1) = kw+I1 mod

n for k,l € Z,,, where according to the value by, w equals w, respectively “’H'C

Since w? = ¢B mod n it can easily be verified that ¢ is a ring homomorphlsm
We show the result for by = —1, since by = 1 can be proved analogously.
2
In particular, we then have ¢(x —s) = 0 — s = 7, ¢(-ws +¢) = wfﬂjs

and consequently qb(%;“) = w. In R the expression 7_““ becomes - sszm +

csg:g) mod n which we will denote by wqx + ws. Observe that, although we do

not know the message w, we do know the polynomial that maps unto w, that is,
w is now implicitly given by wix 4+ wo.

The idea behind the attack in [4J9I12] is now to encrypt this polynomial in
R which gives us a polynomial in z. The homomorphic image of this encrypted
polynomial then equals F(w) since ¢ is a homomorphism. The combined knowl-
edge of E(w) and this homomorphic image then can be used to derive w.

To encrypt the polynomial wyx + we we follow the routines w.r.t. a fixed b;.
We firstly have to find the corresponding values to a(w) and b(w) in R. Since
¢(x) = w and z =cB in R, this can easily be shown to be accomplished. One
obtains a(w) = 2L b(w) = (B 1y mod n in R.

Consequently, one evaluates the Lucas sequences w.r.t. the a(w) in R modulo
n and obtains the encryption in R. Let this result be denoted as uz+v. We stress
that, since a(w) and b(w) in R merely consist of the public information, ¢, B, we
know u and v. But then we know ¢(uz + v) which equals E(w) and therefore
we have uw + v = E(w). Hence, we can solve for w, if (u,n) = 1, which is very
likely. Finally we now obtain w from @ as desired. a

Remark 2. Tt is essential that the homomorphic image of the encrypted polyno-
mial, which is determined by a = a(w), equals E(w). If a were some a(x), the
results obtained would be different from w. In other words, to each E(w) = E'(2)
correspond exactly two possible a, namely a(w) and a(z). Observe that from a
given pair E(w), a only the output z can be obtained when the factorization of
n is known (cf. Proposition [I)).

Proposition 3. Ifb; = —1 and a(x) = a(y) mod n, then 2% = §? mod n, where

— + ~ ystc
T =22 modn and § = s mod n.
Proof. ;jFrom a(z) = ﬁi*c mod n we see that 22 = i+ZEI; mod n, and, anal-
ogously, for a(y), 7? = — i+zgy; mod n. By hypothesis the right hand sides are

equal, which gives the result. O
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Proposition 4. For all z € Z;, we have —a(z) = a(c/x) mod n.

Proof. Observe that —a(z) mod n corresponds to the situation where during
decryption the wrong ¢ = o(a(x)) is obtained. By footnote [0 the decryption

routine evaluates 2(—o) = £ mod n. Since also Z(—0) = £ mod n the definition
c)2 N

of a gives a(z(—0)) = Efg;rc = _:”;j_f( mod n. O
<) —c : g

Corollary 1. If for the case by = —1 one has a(z) = —a(y) mod n then &2 =

(¢/y)? mod n.

3 The Proposed Scheme

3.1 Requirements on the Hash Function

Usually, semantic security is achieved via random oracles. Due to the ongoing
controversy about the existence of such ‘truly random’ hash functions, we design
our scheme in a way where we do not require the ROM. Instead, all our hash
functions involved are special instances of Canetti’s oracle hash functions.
For the exact definitions we refer to [7] and only recall the fundamental concepts
required for our scheme. The primitive, oracle hashing, informally describes a
hash function h that, like random oracles, ‘hides all partial information on its
mnput’.

A salient property of oracle hashing is that it cannot be deterministic, which
traditionally is the case with any hash function, where two invocations on the
same input yield the same answer. However, any deterministic function F' is
inadequate for oracle hashing, since it is bound to disclose some information on
the input, as F(z) itself is some information on z.

Thus, oracle hash functions need to be probabilistic in the sense that different
invocations on the same input result in different outputs. The output of z is ad-
ditionally determined by some randomizer r which is responsible for the different
hash values of z. That is, the hash of x is the output of h(z,r) for the random
value r. Still, there needs to be some means as to verify whether a given hash
value was generated from a given input x. There needs to exist a verification
algorithm, V| that correctly decides, given x and y, whether y is a hash of . We
use Canetti’s suggestion of a public randomness scheme. The randomizer r
appears directly in the output of h(z,r). We write h(z,r) = r, h(z,r).

The fundamental property of our underlying hash functions is Canetti’s or-
acle indistinguishability. Informally, the hashes of x and y with respect to
the same randomizer r, h(z,r) and h(y,r), should be computationally indistin-
guishable to any polytime adversary.

5 The verification property is somewhat reminiscent of signature schemes. Indeed,
this is exactly what will be required in our decryption verification step below. It is
stressed, however, that here no secret keys are involved and all the functions can be
invoked by everyone [7].
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Canetti also considers the case where some (partial) information on z is al-
ready known. E.g., if for some public function f, f(x) leaks some partial informa-
tion on z, M then (f(x)7 h(z, 7")) still should be computationally indistinguishable
from (f(z),h(y,r)) (for details see [7], p. 467).

3.2 The Proposed Encryption and Decryption Schemes

Let || denote the length of the string x. The concatenation of two strings = and
y is denoted by z||y and the bit-wise exclusive-or of x and y is denoted by = @ y.
We generally use the notation a = b mod n to denote the principal remainder
a, that is the unique integer a € {0,...,n — 1} that is congruent to b modulo n.
We will assume that all calculations are carried out modulo n = pq. If w is the
message to be encrypted let w = 0...0w be the padded message of w such that
lw| = |n.

Throughout, g will denote a cryptographic hash function to {0,1}/"! that is
both collision resistant and pre-image resistant, while h will denote a Canetti-
oracle hash function (cf. section BI).

The Proposed Encryption Routine & = £(w).

1. Choose randomly a session key S and a randomizer R from {0,1}"! such
that for
wrp =w® h(S,R), and Sg = S ® h(wg, R),

2 2
one has (M) — (%r=¢) = 1.
n n

2. Calculate a(wgr),b(wgr), E(wg) and a(Sgr),b(Sgr), E(Sg) w.r.t. by = —1 fol-

lowing the routines of section [ZT]
3. Put H = g(0..0a(wg) || 0..0a(Sg) || 9).

length.=|n| length.=|n/|

4. Send the cryptogram C = [c1, ¢2, ¢3,¢4] = [E(wr), E(Sr), R, H].

The Proposed Decryption Routine D = D(cy, ..., c4).

1. Decrypt ¢; to obtain o(wg)a(wgr) mod n, o(wg)b(wgr) mod n following the

formulas of section 2Tl for b; = —1.
2. Decrypt cs to obtain o(Sg)a(Sg) mod n, o(Sgr)b(Sk) mod n following the
formulas of section 2.1l for b; = —1.

3. Select the signs o, o(wg) € {—1,1}, 0(Sg) € {-1,1} and calculate the
corresponding wg and Sg.

4. Calculate S = h(wg,c3) ® Sg.

5. Check whether

cs = g(0...00(wg)a(wg) || 0...00(Sr)a(Sgr) || S). (3)

leugth.zl’nl leugth.:"nl

5 Tt only makes sense to consider the case where f does not give full information on
z. Thus, f should be one-way, or uninvertible (without the use of the secret key).
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6. - If step (B) returns ‘true’, output w = h(S, c3) ® wg.
- Otherwise goto step (B)), select another sign and repeat.
- If step (B) returns ‘false’ for all o(wgr) € {—1,1}, 0(Sg) € {—1,1} then
return “NULL”.

Note that by is fixed. The correct values by follow directly from construction,
since a(x) is directly in the scope of h. It can easily be seen that the signs
o of ta(wg), +a(Sk) mod n, respectively, that pass the test in the decryption
routine, are exactly the signs of the input to the hash function in the encryption
routine, respectively [ Hence, we have

Lemma 1. For the above routines, the decryption of an encryption of any mes-
sage always gives this message.

Remark 3. — The testing check during decryption captures Canetti’s verifica-
tion property. H takes the role of the signing algorithm (with respect to the
underlying w and S), and the testing step (B)) takes the role of the signature
verification algorithm.

— Due to the strong security properties which are achieved, some message
expansion is to be expected. The entire cryptogram can be viewed as an
encryption with combined signature. The hash value provides a proof of
knowledge of the plaintext w and the secret parameter S. In such a setting
message expansion is typical, e.g., [I0J20]. More length efficient proposals
have been made in [26] but the claims were not proved. This was recently
done in [I] in the ROM.

4 Proof of Security

4.1 Semantic Security against Chosen Plaintext Attacks

An adversary A = (A1, A2) defining security against CPA is usually described
via the well-known game play [2]. At first, A; is run on input the public key,
pk. At the end of A)s execution he outputs a triple (wg, w1, s), where wq, w; are
messages of the same length and s is some state information. A random one of
wo and w, is selected, say wyp, and a ‘challenge’ y is determined by encrypting
wyp, under pk. As is given y but not wy. It is now ALs job to determine b, that is,
to decide, if y is the encryption of wg or of wy. In public key cryptography such
an attack is always possible, since any adversary has access to the encryption
oracle, as pk is always publicly known.

" Clearly, the party evaluating the hash value H can replace (the correct) a(z) by
—a(xz) mod n and use this as a forged hash input. Then in the deciphering process
the wrong o will be determined. In that case, it can easily be seen [14] that the
(Williams)-decryption of x obtained equals #(—o) = c2 mod n. Contrary to the
forgery w.r.t. b1 this however, does not expose the factorization of n.
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Canetti showed how oracle hash functions can be used to build a crypto
scheme that is semantically secure against chosen plaintext attacks [7], p. 466f.
Typically, some information f = f(z) is part of the cryptogram and hence
establishes some public information on the secret parameter x. Canetti assumes
that f is uninvertible so that this information leakage does not allow complete
retrieval of x.

In our case this leads to the following technical requirement. We will assume
that given E(Sg), g = ¢(0...0 a(wg) | 0...0 a(Sg) || S), it is impossible to find
the complete underlying secret parameter S.

Remark 4. This assumption actually is not very strong. Informally, we have
the following. Due to the Canetti hash function h involved, by construction no
information on wg leaks from E(Sg) even if E does leak some information on
Sgr, where F denotes the Williams encryption of section ZI1 Also, if a(wg)
did leak from E(Sg) and g, then, since retrieving wg from a(wg) is equivalent
to factoring n, wgr cannot completely be recovered, so that an adversary has
no information on h(wg, R). A lack of complete knowledge of h(wg, R) implies
a lack of complete knowledge of S, even if Sp could completely be recovered
from E(Sg) and g. Similarly, if some partial information on Si and wg can be
obtained by the combined knowledge of E(Sg) and g, again by the Canetti-hash
function h, S cannot completely be recovered. Thus, .S would need to leak in full
from ¢ to violate our assumption.

Analogously as in [7], we obtain the semantic security of the proposed scheme.

Theorem 1. The proposed cryptosystem is semantically secure against adaptive
chosen plaintext attacks, if the factorization of n = pq is hard, h is a Canetti
oracle hash function with the additional technical assumption above on the cryp-
tographic function g.

Proof. (Sketch) Assume an adversary A that does break the scheme under a
CPA. Let the probability for his success be as defined in the proof to Theorem
10 in [7]. The tuple E(Sg), g = g(0...0a(wg) || 0...0a(Sg) || S), yields some in-
formation f on S which by the assumption above corresponds to the uninvertible
function f in Canetti’s case.

Construct an algorithm D that distinguishes between (f(S),h(S,R)) and
(f(S),h(S’,R)), where S,S’, R are randomly chosen and f(S) = (E(Sg),9)-
Since R is public, h(S,R) = R, B(S, R), and by the requirement that h is a
Canetti hash function, it follows that for uniformly chosen S, R the value h(S, R)
is uniform in {0, 1}! for some .

Given f(S), R, ¢ (where ¢ is either h(S, R) or h(S’, R)), the distinguisher D
will construct a ciphertext in the following way. D may choose either one of wyg
or wy as message in the game play defining security against CPA. Assume that
he chooses wy. Then he obtains wr = wy ® &£ and he can hand A the ‘ciphertext’
C = [E(wr), E(Sr), R, g]. Now, if A outputs ‘w;’ then D outputs ‘¢ = h(S, R)’.
Otherwise D outputs ‘¢ = h(S’, R)".

As in Canetti’s case this follows since in the former event the constructed
wgr was the correct one, while in the latter, it must must have been equal to
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wr = w1 ®h(S’, R) # wy ®h(S, R). In particular, then A is given an encryption
of a uniformly chosen message. The decryption cannot be w1, hence in that case,
by the CPA game, it can only be wg, which A4 outputs.
Analyzing D is straightforward with the exact success probability given in [7].
The existence of such a distinguisher yields a contradiction to the assumption.
O

4.2 ‘Weak-Sole-Samplability’

Recall the notion of a valid ciphertext. This is such where the decryption oracle
does not reject. We now completely characterize all possibilities how for the
proposed scheme valid ciphertexts can be obtained.

The randomizer R, since it directly occurs in C, plays a unique role. Nonethe-
less, this information cannot be used for any attack. (Compare also Canetti’s
discussion on this public randomizer [7]).

Lemma 2. Let C = [cy, ¢a, c3,¢4] be a valid ciphertext, h a Canetti oracle hash
function, g a cryptographic hash function, and suppose that the factorization of n
1s infeasible. If in C the c3 gets modified, then a necessary condition for obtaining
another valid ciphertext is that all entries in C get modified.

Proof. We analyze any adversary that tries to obtain another valid ciphertext.
Let ¢4 be the modified value and let C be the encryption of the message w relative
to the session key S and the randomizer R. We can assume that the adversary
knows w (e.g. by mounting a CCA). We can also assume that he knows S (e.g.
by his own encryption) because otherwise any such attack would not be possible
(this follows from the fact that ¢4 remains unchanged, g is both collision resistant
and pre-image resistant and since the given C is a valid ciphertext). By their
definition he then also knows wg and Sg.

Suppose firstly that C' = [e1, ¢2, ¢, cq] is also valid. Then the validity check
@) passes if ¢4 = g(...||S) = g(....]|S"), where S’ = §'(c4) is in the fourth step
of the deciphering oracle computed as S’ = h(o(wg)wr, ¢4) ® Sg. By the choice
of h necessarily S’ = S so that h(o(wgr)wg, ¢5) has to evaluate to S @ Sg. But
that would imply that h(wg,cs) = h(wg, c) which is extremely unlikely [7].

Similarly, we see that C' = [c1, ¢b, ¢, c4] where ¢, is determined a priori, leads
to a contradiction. Consequently, the adversary needs to evaluate a modified ¢
accordingly, i.e. such that the properties of the hash function are not being
violated. This is only possible if at first the hash input, that is some ¢4, is being
selected. As above, we again need to have S’ = S, where now S’ = h(wg, c}) ®
D(ch), and D is the Williams decryption of section [Z1] ;From the hash output
and S’ = S the adversary then obtains the decrypted value x = D(ch) (w.r.t.
by = —1) of the forged ¢, that is, x = S; (respectively ¢/S%).

However, this « has to be of a special form (this will lead to the contradiction
below), because in the validity check it is required that

cq = g(...]|0..0 60(Sg)a(Sgr)|l...) = g(...]|0..0 o(x)a(z)]|...)
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(where we assume that the hash input is split up according to the appropriate
lengths).

By Proposition @] the above identity is only possible if either a(Sg) = a(x)
modn, or a(Sg) = a(c/x) mod n, depending on whether the above o’s corre-
spond or not. According to Proposition Bl and Corollary [T],

2 —~2 —
either S~ = 2% mod n or Sg = (¢/x)? mod n.

But we also have that ¢y Z ¢, mod n. Also, by assumption, both C and C’ are
valid which means that the test passes for exactly one o(Sg) and thus for exactly
one o(x) which then yields the corresponding values, x or ¢/x, respectively.

Since the decryption of ¢4, as well as that of cg, is being conducted w.r.t.
by = —1, the preimages, « and Sg, respectwely c/x and Sy, need to be distinct

mod n. Then also & and SR7 respectively c/x and SR need to be distinct since
otherwise s> = ¢ mod n, contrary to the choice of s.

Further, we can show that & £ —Sg, respectively ¢/z Z —Sg mod n. These
two cases can be dealt with the same way. Observe that  was defined according

to the hash output of ¢4, i.e. as x = h(wg,c;) @ S. If we assume that z =
—Skr mod n then ¢§ (which has been selected a priori) would hash to the specific
output S @ (—Sg) mod n, a contradiction. Analogously, & # 75/‘;3, respectively
c/x = —Sp mod n. But then ged( — Sr. n), respectively gcd(c//; — Sg, n) is
a proper factor of n. To find this factor the adversary only needs to know z,
respectively c/ z and Sy, which he does when he knows z.

Observe that the adversary already knows w,wr and Sgr. However, Propo-
sition [2 asserts that the adversary can calculate z from E(z) = ¢}, and a(z) =
a(Sr) respectively —a(Sgr) mod n.

Thus, the adversary would find the factorization of n. The derived contradic-
tion to the hypothesis of the lemma implies that the adversary cannot compute
a valid ciphertext by just forging ce and cs.

The adversary can also try to forge c;. But, in order to pass the test, then
he would need to know ¢} along with the corresponding o(y)a(y), where y (re-
spectively ¢/y) is the decryption of ¢} (w.r.t. by = —1).

As decrypting ¢} or determining this a(y) is equivalent to factoring (Proposi-
tion[), the adversary can only, conversely, define y as w, and encrypt y (w.r.t.
by = —1) to obtain his forged ¢}. Similarly as above, he needs to evaluate S}, as
h(w'y, ¢5) @ S in order to fulfill the requirement on the hash function in (@) with
respect to the last block in the input. But this now constitutes a special form
of the attack considered above. The adversary would have to forge co which is
impossible, independent of the choice of ¢;. a

Let us consider an adversary that has access to g, h, £, and D. He can play
with his encryption oracle, and may also make ¢ queries of the decryption oracle.
He then produces a new valid ciphertext that he outputs. As in [2] we demand
that the adversary never outputs a string that coincides with the value returned
from some E-query.
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The basic idea in both Lemma Bl and Theorem Bl below is to analyze the
different possibilities as how an attacker might be able to reuse existing valid
ciphertexts. That is, we investigate all ways for obtaining valid ciphertexts (other
than running the encryption oracle).

We will give a complete characterization of all possibilities to find a valid
ciphertext. Depending on whether the adversary knows the secret parameter S
corresponding to some known valid ciphertext, he may follow only one of the
specific steps given in the proof below. In each of these particular cases the proof
also shows that the adversary is not able to generate any new valid ciphertext
whose plaintext he does not know.

For1<i<tletC;, = [c1 ) cg ), cg ,c4 ] be the ith valid cryptogram that the
adversary gets decrypted. Let C’ be the new valid ciphertext that the adversary
produces. By Lemma [2l we only need to distinguish between the following types
of attacks.

— Type I: There is some 1 < j < ¢ such that for C; = [¢1, ¢2, 3, 4],
(a) C' = [¢}] # c1,¢a,¢3,¢4], (b) C' = [c1,ch # ca,c3,c4],
(c) C' = [c] # c1,¢5 # ca,¢3, 4],
— Type II: There is some 1 < j < ¢ such that for C; = [e1,¢2,¢3,c4], ()
C' = e, co,c3,¢) #cq], (b)C' =][c] #ci1,c,c3,¢) 75 R
(c) C'=le1,ch # Czacsa% # ca), (d) C'= [01 # 01,02 # 02,03,04]
— Type III: For all 4, [clsaféc1 ,027402 ,037&03 ,047&0 ]

Theorem 2. Assume that h is a Canetti oracle hash function, g is a crypto-
graphic hash function, and that it is computationally infeasible to find the fac-
torization of n. Then the above encryption scheme is weak-sole-samplable. Any
valid cryptogram that is not an € output, has to be the result of some type II
or III attack with the individual steps described below. In both cases, the adver-
sary then knows the underlying w, S, as well as the underlying signs o in the
hash-input.

Proof. Type I attacker:
Suppose we have a type I (a) attacker. Because ¢4 is fixed we can as in the
proof to Lemma [2] assume that the attacker knows the corresponding w and S.
Observe that, since C is valid, the S = h(wg, c3) @ Sg obtained in the fourth
step of D passes the test (@) for the unique o(wg) and thus for the unique wg.
If now ¢; # ¢} then the S’ obtained will be different from S. This follows, since
for fixed by = —1 the decryption of ¢ is either w, or ¢/wl. These values are
different from wg because otherwise ¢; = ¢. Therefore the test will reject for
this S’. In order to obtain the same S, also ¢3 would have to be modified, which
is not the case under the type of attack under inspection.

Similarly we see that a type I (b) attack will be rejected by the test because
the S’ obtained in step (4) will not match the valid S.

Now consider a type I (¢) attacker. In order to guarantee that the S’ obtained
in step (4) equals the valid S, the adversary can only proceed analogously as
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in the proof to Lemma 2l He needs to define the (Williams) decryption of the
modified ¢, that is Sy, as S @ h(y, c3), where y = w/, is the decryption of ¢f.
But these w}, and S} need to pass (B). Similarly as in Lemma 2] he would be
able to factorize n, a contradiction. Hence, any type I attack will get rejected as
well.

Type II attacker:

For a type II (a) attacker observe that by definition c1, ¢g, c3 remain unchanged.
Hence, in steps 2 and 3 during decryption, the quantities +a(wg), £a(Sg) cor-
responding to the original w and S are obtained. Since ¢y = g(o(wgr)a(wg)
[lo(Sr)a(Sgr)||S) for the specific o(wg), o(Sg), one can only obtain a modified
hash output w.r.t. different signs, o(wg) and/or o(Sg). The requirement on g
necessitates that the adversary knows the individual blocks in the hash input
(he can only obtain the output from the input). As he also needs to know ¢,
and co, by Lemma 2] he knows the modified message w as well as the modified
S that result in the modified cryptogram due to the change of the o’s.

In a type IT (b) attack the test only passes if the hash output, ¢} is calcu-
lated as the hash-output w.r.t. the modified ¢}. Then the adversary has to know
the o(w}y)a(w) that is obtained by decrypting ¢}. As usual, by Lemma [2] we
conclude that he can find w}, respectively ¢/w’,. To obtain the hash value ¢
he also needs to know the o(Sg)a(Sg). Again, since he knows ¢y he then knows
Sk. Depending on the o’s selected he obtains two different (modified) S and
four different (modified) w. He can easily verify which of those have the desired
encryptions ¢} so that he knows the modified w and S that result in C’'.

Exactly the same way we can show that in a type II (c) attack the adversary
needs to know the underlying quantities that result in C’.

A type IT (d) attack can be dealt with analogously, because knowledge of a(x)
and E(z) is equivalent to knowing x, where  firstly is w}; and then secondly S%.

Type III attacker:
The result follows exactly as for a type II (d) attacker because the value c3 is not
essential. The adversary would need to know the first two blocks of the input to
the hash function. Along with ¢} and ¢ this is equivalent to knowing w} and
ST, where ¢4 = R’. However, since ¢4 is public one easily finds the underlying w’
and S’ from the randomized w, and S}.
We have shown that valid ciphertexts cannot be obtained apart from knowing
their underlying parameters, which completes the proof of Theorem[2in all cases.
O
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