
A PVSS as Hard as Discrete Log
and Shareholder Separability

Adam Young1 and Moti Yung2

1 Columbia University, New York, NY, USA.
ayoung@cs.columbia.edu

2 CertCo, New York, NY, USA.
moti@cs.columbia.edu

Abstract. A Publicly Verifiable Secret Sharing (PVSS) scheme allows
a prover to verifiably prove that a value with specific properties is shared
among a number of parties. This verification can be performed by any-
one. Stadler introduced a PVSS for proving that the discrete log of an
element is shared [S96], and based the PVSS on double-decker exponen-
tiation. Schoenmakers recently presented a PVSS scheme that is as hard
to break as deciding Diffie-Hellman (DDH) [Sch99]. He further showed
how a PVSS can be used to improve on a number of applications: fair
electronic cash (with anonymity revocation), universally verifiable elec-
tronic voting, and software key escrow schemes. When the solution in
[Sch99] is used for sharing a key corresponding to a given public key, the
double-decker exponentiation method and specific assumptions are still
required. Here we improve on [Sch99] and present a PVSS for sharing
discrete logs that is as hard to break as the Discrete-Log problem itself,
thus weakening the assumption of [Sch99]. Our solution differs in that it
can be used directly to implement the sharing of private keys (avoiding
the double decker methods). The scheme can therefore be implemented
with any semantically secure encryption method (paying only by a mod-
erate increase in proof length). A major property of our PVSS is that
it provides an algebraic decoupling of the recovering participants (who
can be simply represented by any set of public keys) from the sharing
operation. Thus, our scheme diverts from the traditional polynomial-
secret-sharing-based VSS. We call this concept Separable Shareholders.

1 Introduction

Secret sharing schemes were introduced to enable the distribution of trust among
several participants. In a secret sharing scheme a secret is split into several pieces
and is shared among several participants. Only when the shares are put together,
or in the case of threshold sharing schemes when some subset of the shares are put
together, is the secret reconstructed. To protect against cheating participants,
the notion of Verifiable Secret Sharing was introduced [CGMA,F85]. In VSS,
a verification protocol allows the participants to verify that the unique secret
can be reconstructed when needed. A property of a VSS which was emphasized
by Stadler [S96] is that “not only the participants, but anyone can verify that

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 287–299, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

288 Adam Young and Moti Yung

the secret is shared properly”. When a VSS scheme has this public verifiability
property, it is called a Publicly Verifiable Secret Sharing (PVSS) scheme.

The original PVSS needed the double-decker discrete log assumption [S96].
Other special assumptions for PVSS schemes were given in [FO98] (in partic-
ular a special RSA assumption which allows partial recovery), whereas [Sch99]
managed to reduce the assumption of a discrete log PVSS to regular Decision
DH (DDH). Here we manage to reduce the required assumptions even further,
which simplifies the scheme and enhances its usability and availability as we will
explain. It is worth noting in this context the interesting work of [PS00], where
they develop a nice approach to short non-interactive proofs. However this is a
new approach of a somewhat different flavor and obviously of different optimiza-
tion goals (i.e., their very short elegant proof scheme does not assure asymptotic
inverse exponential reduction in security, but relies on the state of the art of
certain algorithms. Also, the recovery of secrets in their case may be delayed).

We note that a random oracle assumption for making proofs transferable
(NIZK a la Fiat-Shamir) and secure encryption assumptions for implementing
secure authenticated channels are also employed whenever a PVSS scheme is de-
signed. For our scheme it is possible to use any probabilistic encryption. Our new
scheme enables the use of schemes other than these based on DDH. In particular,
for DH based schemes, a practical scheme which is based on a computational
Diffie-Hellman assumption, namely, the partial-trapdoor property of DH (and a
random oracle) but that does not require the DDH assumption can be employed
[FO99,P00].

Several useful applications can be built using PVSS schemes. Among the
applications of PVSS are voting [Sch99], anonymity-revocation in e-cash systems
(e.g., [FTY96]), escrow systems [Mi,S96,VT,YY98], and certified e-mail [Mi98].

A major general advantage of our design (which we bring to the above ap-
plications) is a separation of the structure and organization of the recipients
(share-holders, election officials, authorities, etc.) from the rest of the world.
Thus, the share-holder group can be viewed as an organization which can be
managed internally and be presented implicitly (keeping the internal structure
hidden) or explicitly (specified access structure and keys) to the rest of the world.
This allows a dynamic (and also parallel) share-holder organization. The separa-
tion of internal organizational workings and the external world (and its impor-
tance to managing evolving commercial entities and consortium bodies) was put
forth in [FY99] for general PKI, and, in the context of election schemes it was
implemented in [CGS97]. In particular, [FY99] suggests to employ “proactive
key maintenance” methods to change the share holder group, while keeping the
shared information intact. Our constructions when used with implicitly shared
keys, support such operations.

2 The Definition of a PVSS

We will now present the informal definition of a PVSS taken directly from section
2 of [S96] (here s is the value being shared).

A PVSS as Hard as Discrete Log and Shareholder Separability 289

Let A be a monotone access structure. Since A is a monotone access structure,
it follows that if A ∈ A and A ⊆ B, then B ∈ A.

Definition 1. A PVSS consists of a dealer, n participants P1,...,Pn such that
each has a public encryption function Ei and such that each has a corresponding
secret decryption function Di, a monotone access structure A ⊆ 2{1,...,n}, and
algorithms Share, Recover, and PubVerify which operate as follows:

Share: The dealer uses the public encryption functions to distribute the shares
by calculating Si = Ei(si) for 1 ≤ i ≤ n. The dealer then publishes each share
Si.

Recover: If a group of participants want to recover the secret, they run Re-
cover, which has the property that ∀A ∈ A: Recover({Si|i ∈ A}) = s, and that
for all A /∈ A it is computationally infeasible to calculate s from {Si|i ∈ A}.

PubVerify: To verify the validity of all encrypted shares, PubVerify is run by
any inquiring party. This algorithm has the property that ∃u ∀A ∈ 2{1,...,n}:

(PubV erify({Si|i ∈ A}) = 1) ⇒ Recover({Di(Si)|i ∈ A}) = u

and u = s if the dealer was honest.

A PVSS is called non-interactive if PubVerify requires no interaction with
the dealer at all.

Properties of PVSS:

Completeness: We say that a PVSS is complete if whenever the dealer is
honest (and the (unique) value for s is recoverable by the participant(s)), the
verifier accepts the prover’s proof as valid (with overwhelming probability).

Soundness: A PVSS is sound if whenever the unique s is not recoverable,
the verifier accepts the prover’s proof only with negligible probability.

The last two properties are important for the notion of a PVSS to be correct.
The necessary notion of completeness was omitted from the informal definition
of [S96]. We note that the above properties put together also imply that the
dealer which encrypts with a group’s key (even though it encrypts to a group of
servers which it does not even interact with directly), does not have to use chosen
ciphertext secure encryption (as our complete proof below demonstrates). This
is in contrast to other recent applications of proving properties of encryption.

Secrecy: Finally, another property of a PVSS is secrecy, which means that
any group not in the access structure should not be able to retrieve s (but
perhaps with negligible probability) given the public output of Share.

Observe that the above definition does not state that s must be of any par-
ticular form. For example, this definition does not state that s must be a private
key, and that PubVerify must be able to verify that s is the private key corre-
sponding to some public key. In fact we may distinguish between the cases in

290 Adam Young and Moti Yung

which a value, private key, or encryptions under a shared public key are recov-
ered. These are interesting sub-cases which are required for various applications
of PVSSs 1.

Also, the monotone access structure in the original definition may be ex-
tended to include threshold schemes [Sch99] (see [D92,FY98]). In fact, we will
employ any semantically secure encryption function by the participants, which
will enhance the applicability of our scheme.

3 PVSS for Discrete Logs Based on the DL Problem

We will now present a PVSS for discrete logs (DL) which is based on the difficulty
of computing discrete logs. This contrasts with the PVSS scheme in [Sch99] which
assumes the difficulty of Deciding Diffie-Hellman.

The following are the cryptographic primitives that are used in our system.
enc is a a semantically secure probabilistic public key encryption algorithm that
takes three arguments, m, s, and PUB. Here m is a message to be encrypted,
s is a randomly chosen string to make the encryption probabilistic, and PUB
is the public key of the participant (or shared among a set of participants or
created by individual public keys of participants). Thus, c = enc(m, s, PUB)
is the ciphertext of the message m. Let dec be the corresponding decryption
function. Thus, m = dec(c, PRIV), where PRIV is the private key corre-
sponding to PUB. It could be that PRIV is shared distributively, in which
case m = dec(c, PRIV1, PRIV2, ..., PRIVm). This can model either a thresh-
old scheme or a polynomial-size monotone access structure composed of nested
encryptions of the value by the keys of members of groups in the access structure.

The prover who is the dealer generates a private value x and its corresponding
public commitment y = gx mod p. We can insist that p is a safe prime and that g
has order p−1, or we can insist that g has order q where q is a large prime dividing
p− 1. For this section we will w.l.o.g. assume that g has order p− 1. Informally,
the system then works as follows. The dealer commits to knowing two shares that
sum to the dealer’s private exponent x mod p−1. This commitment is performed
using the envelope method in which additive pieces of the secret are committed
to separately 2. The method employs a public homomorphic commitment for
each piece, and a further commitment to a piece which is performed using the
arbitrary probabilistic encryption function enc under the participants public
keys(s) (shared or explicitly combined key(s) that is). Thus, enc provides a
semantically secure encryption relative to the public homomorphism, and hence
1 Of course, sharing a public-key implies sharing a value (which can be encrypted

under that key) and sharing the key implies recovery of messages encrypted under
that key as well, and we leave as open other implications and separations which may
be needed in applications.

2 The envelope method is different from the usual polynomial sharing which is ex-
tensively used; since we are going to use additional shared encryption (owned by
the recovery participants) we found that there is no need to employ, prior to the
encryption, explicit sharing techniques like polynomial sharing schemes.

A PVSS as Hard as Discrete Log and Shareholder Separability 291

provides a secure commitment with respect to the verifier, who can be anyone
including the participants. A total of M additive envelope pairs are committed
to using enc. Using challenge bits, the dealer is forced to reveal a share, not
of his choosing, for each pair of additive shares. So, the system in some sense
constitutes a proof that at least one pair of shares that sum to x has been
committed to under enc. Thus, with overwhelming probability, the transcript of
the proof itself can be used by the participant(s) to recover x.

We will next review the algorithm in detail.

Share: The following is the non-interactive (transferable) transcript genera-
tion algorithm based on H being a random oracle. It is this transcript that forms
the verifiable encryption of the prover’s secret x.

1. P = ()
2. for i = 1 to 2k(n) do
3. ri ∈R Zp−1
4. choose two random strings si,1 and si,2 for use in enc
5. Qi = gri mod p
6. Ci,1 = enc(ri, si,1, PUB)
7. Ci,2 = enc(ri − x mod p− 1, si,2, PUB)
8. add (Qi, Ci,1, Ci,2) to the end of P
9. val = H(P)
10. set b1, b2, ..., b2k(n) to be the k(n) least significant bits of val, where bi ∈ Z2
11. for i = 1 to 2k(n) do
12. wi = ri − bix
13. zi = (wi, si,j) where j = 1 + bi
14. add zi to the end of P

Thus, P = ((Q1, C1,1, C1,2), ..., (Q2k(n), C2k(n),1, C2k(n),2), z1, ..., z2k(n)). Here
P denotes the non-interactive proof, or transcript. Note that the bi’s can be
recovered from P . The algorithm outputs (y, x, P) to the dealer.

PubVerify: To verify that x is recoverable by the participant(s) who own(s)
y, the verifier takes y, the corresponding P , and the public key PUB. The verifier
first checks that y < p. The verifier checks that all of the values in P lie in the
correct sets. The verifier also checks that the values Ci,j for all i and j, do not
contain any repetitions. The verifier checks that none of the Qi for all i are
repetitious. If any of these verifications fail, then false is returned (the prover
can easily avoid repetitions by checking that the chosen values are not repeating
which is a negligible probability event for the honest prover). The verifier then
computes b1, b2, ..., b2k(n) in the same way as in the “share” computation. For
i = 1 to 2k(n), the verifier verifies the following things:

1. enc(wi, si,j , PUB) = Ci,j where j = 1 + bi
2. Qi/(ybi) mod p = gwi mod p

The verifier concludes that x is recoverable as long as all the verifications
pass and as long as both 1 and 2 above are satisfied for 1 ≤ i ≤ 2k(n).

292 Adam Young and Moti Yung

Recover: When the shareholder(s) obtain(s) the non-interactive proof P all
values are decrypted and the second cleartext value is subtracted from the first
cleartext value mod p − 1 for each pair to obtain a value. To verify that such
a value is x, the shareholder(s) raise(s) g to this value mod p and compares it
with y. We remark that the ability to do this in a shared fashion depends on the
algorithms used for enc and dec. Some schemes may use threshold encryption,
whereas general semantically secure algorithms can always support a shared dec
algorithm in which decryption is performed by each participant in turn, giving
the result to the next participant for decryption. The trust model in the later
case has to be such that the last participant to decrypt has to be trusted to share
its information. Verification of the value is public due to the public homomorphic
commitments.

4 Security and Correctness

The non-interactive PVSS for sharing x was constructed based on a 3-round
atomic computational ZKIP with error probability 1/2. To see this, note that it
directly corresponds to the following interactive 3-round protocol3:

1. For i = 1 to k(n) do:
2. P chooses ri ∈R Zp−1
3. P chooses si,1 and si,2 randomly for use in enc
4. P computes Qi = gri mod p
5. P computes Ci,1 = enc(ri, si,1, PUB)
6. P computes Ci,2 = enc(ri − x mod p− 1, si,2, PUB)
7. P sends (Qi, Ci,1, Ci,2) to V
8. V sends bi ∈R {0, 1} to P
9. P computes wi = ri − bix mod p− 1
10. P sends zi = (wi, si,j) where j = 1 + bi to V
11. V verifies that:
12. enc(wi, si,j , PUB) = Ci,j where j = 1 + bi
13. Qi/(ybi) mod p = gwi mod p

Here n be a security parameter and k(n) = ω(log n) is given. The proof
achieves error 2−k(n). Soundness of the above protocol can be seen by the fact
that if P does not know x then in a given round P can respond to only one
possible outcome, otherwise P can compute discrete logarithms. It differs from
standard zero-knowledge proofs in that, in addition to a commitment value being
sent in the first round (i.e., using Qi to commit to the base g logarithm of Qi

mod p), the prover sends two semantically secure encryptions (which must be
consistent with the commitment in Qi and x). The first of these encryptions
3 We comment that an interactive variant which is based on parallel execu-

tion (using claw-free function commitments by the verifier) exists and that al-
lows the entire proof to be conducted in a small (constant) number of rounds
[GK,BMO,IS93,BJY97].

A PVSS as Hard as Discrete Log and Shareholder Separability 293

can be thought of as yet another commitment of the base g logarithm of Qi.
The second encryption is a commitment to the base g logarithm of Qi/y. Since
these are both semantically secure encryptions, they give nothing to a poly-time
bounded adversary that the adversary couldn’t compute himself. They are, in
some sense, redundant commitments of Qi and Qi/y (they are useful since they
provide recoverability by the participants). In the second round, the verifier sends
a randomly chosen bit to the prover, as in standard zero-knowledge proofs. In
the third round, the verifier either opens the commitment ri (for Qi) or opens
ri − x mod p − 1 (for Qi/y), as in standard zero-knowledge proofs. The only
difference is that exactly one of the two semantically secure encryptions is also
opened, and verified for consistency (to insure that “recover” works). In arguing
zero-knowledge of the interactive procedure, ri is chosen at random and if bi is
expected to be 0, Qi is computed as in the protocol. In this case Ci,1 is encrypted
correctly and Ci,2 is formed by encrypting the string with each bit being zero
(indistinguishable from a correct encryption). On the other hand, if bi is expected
to be 1, then again ri is chosen at random, Ci,1 is made to be an encryption of
zeros, and Ci,2 is made to encrypt ri. In addition Qi = griy is published (so that
the verification checks pass). Standard zero-knowledge, assuming commitment
(encryption in our case) implies that the simulation can be conducted in expected
polynomial time. Completeness follows a standard argument. Thus, given y the
above is a complete and sound and computational zero-knowledge (simulatable)
interaction.

Lemma 2. The PVSS scheme is computational zero-knowledge and therefore
secure in the random oracle model (with error 1/2k(n)).

Proof. (sketch). In section 5.2 of [BRa], a reduction is given that shows how to
transform any three move ZKIP for L ∈ NP with error probability 1/2 into
a non-interactive ZK proof in the random oracle model. The reduction accounts
for a set of envelopes being sent in the first round, and having some subset
of the envelopes opened according to a randomly chosen challenge bit b. The
reduction therefore applies to our protocol above for discrete logs. The transfor-
mation that is given in [BRa] is the same transformation that was used to obtain
the non-interactive version given above. Since semantically secure encryptions
yield nothing that can’t be computed efficiently without the encryptions, the
lemma then follows from the transformation. Note that since the transcript is
zero-knowledge (simulatable) given y = gx then whatever is derivable from the
public key y about the private key x without the transcript, can be derived with
the transcript with related probability (the relation is given by the simulation
argument given in the transformation). In particular, if x can be derived from
y and the transcript by a party that does not hold PRIV (namely, violation of
secrecy), then if enc is semantically secure, we can use the successful derivation
to break the discrete log assumption. QED.

We will now prove that the non-interactive PVSS for DL based keys is a
proof of knowledge in the random oracle model. This will imply that the PVSS
itself is, with respect to shares, complete and sound. This part does not need

294 Adam Young and Moti Yung

the assumption that computing discrete logs is intractable but we still need the
fact that the encryption is indeed a commitment scheme and we still need to use
the random oracle model (for the protocol to be non-interactive and produce
a transferable transcript). We do not give in this version a formal definition
for a non-interactive proof to be a proof of knowledge in the random oracle
model. However, in a nutshell, it is a continuation of the formalization of the
Fiat Shamir [FS86] notion (which was formalized but not for proofs of knowledge
in [BRa,PS96]). We would like that possible unpredictable different (forking of)
values of a polynomial portion of the oracle answers imply the extractability of
the witness value. We then extend extraction, to extraction by a third party who
can recover the commitment. (Familiarity with proof of knowledge, extractors,
and the random oracle model is assumed).

Lemma 3. The non-interactive PVSS for DL based keys constitutes a proof of
knowledge with knowledge error 1/2k(n).

Proof. It is easy to see (similar to the zero-knowledge proof being complete) that
the non-triviality condition holds. We will now consider the validity condition.
The common input α is y = gx mod p. The auxiliary input (witness) β is
x mod p− 1. We have that xi = (Qi, Ci,1, Ci,2), yi = zi, t = 2k(n), and the bi’s
in the proof are the same as the bi’s in the definition. Suppose that P makes a
total of T (n) oracle queries when given H and H ′ (e.g., in an attempt to fool
V). If the prover doesn’t know a witness then the prover will convince V of
the validity of the proof with probability at most T (n)2−2k(n) which is at most
1/2k(n) for sufficiently long n (see [BRa] section 5.2). Thus, the knowledge error
is at most 1/2k(n). It follows that p(α) is at least 1 − 1/2k(n).

Let T = Pα,β,r(H) and T ′ = Pα,β,r(H ′) Consider the following knowledge
extractor K. Suppose that in round i, bi in T is 0 and bi in T ′ is 1. K then
subtracts the wi in T ′ from the wi in T mod p− 1 to get xc, a candidate value
for x. The operation of K when the bits are inverted is similar.

We will now give a lower bound on K’s probability of extracting a witness
from T and T ′ (we won’t derive an exact probability, since using T (n) oracle
queries, P may always try to make the first half of the bi’s 0 to try to fool the
prover, for example). Assuming no extra oracle queries are made, with probabil-
ity 1/2 we have that bi in T equals bi in T ′, since the bi’s are chosen randomly
for both T and T ′ (H and H ′ serve as honest verifiers). So, with probability
1/2, the bi’s in each transcript differ and the knowledge extractor can extract x
from both de-committed values. To see this recall that P for both transcripts is
using: the same common-input α, the same auxiliary input β, and the same ran-
dom tape r. The probability that x isn’t extracted in any of the 2k(n) rounds is
2−2k(n). Now consider the case where P makes T (n) additional oracle queries. It
can be shown that the probability that x isn’t extracted is at most T (n)2−2k(n).
For sufficiently large n this probability is at most 2−k(n). Thus, the probability
that the witness s = x is extracted by K is at least 1−2−k(n). Taking this worst
case value, along with the worst case values for p(α) and the knowledge error,
we get the claimed knowledge error.a QED.

A PVSS as Hard as Discrete Log and Shareholder Separability 295

Theorem 4. The PVSS above is a complete, sound, and secure protocol.

Completeness holds since any decrypted pair can give the correct secret that
is shared. The proof of knowledge (extraction) which is done by verifying the
commitments (which are in fact encryptions openable by the owners of the en-
cryption’s private keys) implies that with the same probability of extraction (as
in Lemma 2), the owner of the encryption method can decrypt both envelopes
of the correct shared secret (and verifies its value against its public witness),
and the owner is fooled only with a negligible probability (that of the knowledge
error). This implies soundness. Lemma 1, in turn, implies secrecy.

5 Applications

Shareholder Separability:
The simplified PVSS here treated the encryption keys of the shareholding au-
thorities as a given black box. This enables many applications in an extended
setting where the public key schemes of authorities/shareholders/agencies are
managed and organized separately from the users who only have access to an
agency’s public key; various authorities, in fact, may have different types of pub-
lic keys. This principle of separation of management of various roles is key in
evolving organizations. Cryptographic designs in critical commercial and finan-
cial settings should follow such principles, as advocated in [FY99] in the context
of PKI. The structure and composition of the shareholder group can be changed
using “proactive maintenance” [OY91] and the secret is not revealed while the
shareholders change as discussed in [FGMY].
E-cash with anonymity revocation:
Various schemes have been used to implement e-cash where the authorities are
off-line and the user performs a proof of encryption with the trusted authority
keys (e.g. [FTY96]). In these schemes the trustees’ key is a shared ElGamal key.
Since our PVSS decouples the receivers’ key (it can be any public key, have any
access structure, and have any organization), we can extend the above schemes
by allowing the user to commit to the value of the coin based on the discrete log
problem while encrypting using any scheme. The PVSS becomes a generalized
“indirect discourse proof.” This may be a significant extension which enables
the development of the structure of the trustees and their organizational and
operational changes independently from the underlying scheme. The changes
may be done implicitly or explicitly (notions described in detail in [FY99]). If
an explicit change is performed, the trustees’ keys are publicly changed and the
users have to be notified to spend or replace their coins for the coins to maintain
their value. An implicit change does not change the external view of the trustees
and seems preferable in this setting.
Universally-verifiable secure ballot election:
We can use our PVSS to obtain a simplified scheme for secure ballot election (in
the setting of [CF85]) or with distributed tallying authorities (as in [BY86]). Here
we assume that the exponents are taken from a prime order subgroup generated
by g (say p = 2q + 1, where q is a large prime and g generates the quadratic

296 Adam Young and Moti Yung

residues Gq). Voter i commits to a random Gi = gs and to Hi = ys or y(s+1),
depending on whether it casts 0 or 1, respectively (the discrete log of y mod g is
globally unknown, the security here relies on the semantic security of ElGamal
in the subgroup which is equivalent to DDH [TY,NR]). The voter proves (in
NIZK) the relationship between Gi and Hi (see [Sch99]). It then PVSS’s the
value of s in Gi = gs. The tallying authorities can recover s and the ballot (s or
s + 1) for each voter but will keep it secure. The voting is robust (each user’s
PVSS proof is publicly verifiable) and can be made independent of other users
(by changing the hashing procedure for users based on the unique user ID). The
authorities can present and prove the correctness of the results. Everyone can
compute the product of the values of G =

∏
iGi and that of H =

∏
iHi. The

discrete logs ofG,H and their differencemod q (the exact tally) is available to the
authorities, who can claim the result and present a NIZK proof of knowledge
of this value based on the public availability of G,H and the result (and the
private knowledge of the discrete log values). Of course the exponent additive
group size, q, is larger than the number of voters which, together with the NIZK
of the users being verified, prevents wrap-arounds of the difference above.

Once again, the keys and organization of the tallying authorities and their
structure is independent of the ballot construction. This has some advantages
such as: a number of parallel tallying authorities can be easily implemented (by
encrypting in parallel with their keys), authorities organized as a general linear
access structure is possible, dynamic changes in the tallying authorities between
and during elections [FY99] is possible, etc. A somewhat more specific separation
was given already in the scheme of [CGS97].
Software key escrow applications:
In [YY98] a model and solution for key recovery in the context of a public-key
infrastructure was given and implementation based on double-decker exponenti-
ation was given. In this model, each user is responsible for escrowing his or her
own private key and is responsible for constructing a proof to this effect. Such a
user is granted a digital certificate by a CA only if a public key, an encryption
of the corresponding private key, and a proof that the encryption is correct is
supplied to the CA during key certification (and only during certification). The
PVSS scheme can be used to solve this problem as follows. The user computes
the public key y = gx mod p where p is cryptographically secure (e.g. p − 1 is
a multiple of a large prime). The prover, who is the dealer in the PVSS scheme
then shares the private key x among the participants which are the escrow au-
thorities (just by knowing the keys of the authorities which are public). For
verification, since the CAs know the shared public key of the participants, the
user can send y along with the proof to any CA for key certification. The CA is
thus the verifier in the PVSS. The recover procedure is run by the authorities
given the transcript from the CA. The authorities recover the private key (or
even better they recover encryptions of session keys encrypted under the user’s
public key without ever recovering the user’s private key itself (as advocated in
[LWY95,FY95]) which is possible in various threshold cryptography settings).

A PVSS as Hard as Discrete Log and Shareholder Separability 297

In contrast, in [Sch99] a similar key escrow solution based on [YY98] was
given that makes use of a value f which generates a high order subgroup of Zp,
and which uses a fixed element g with high order in Z∗

p . In that solution the value
C0 = gs is published (in the distribution protocol of section 3 in that paper).
Thus, the escrow solution is secure only if computing discrete logs in a subgroup
is intractable (as well as the DH assumption). Note that the parameters g and h
require that p = 2tq+1 and q = 2wr+1 where p, q, and r are primes and t and
w are positive integers. Also, the public key in that solution is H = f (G

s), where
f is an appropriate generator (as in [S96]). Since both H and C0 are public,
this escrow solution makes a cryptographic assumption above and beyond the
new PVSS, and this assumption is missing from the paper. The cryptographic
assumption is that given (H,C0) it is intractable to recover Gs (and therefore
s too). Note that the exact same assumption was made in [YY98], where it
was refereed to as “problem 1” (which is a DH-Dlog combined problem). This
is not the standard DH assumption. It is important to distinguish between the
assumptions made for the security of the PVSS protocol, and the assumptions
made for the security of the published trapdoor values. This is especially true
when a PVSS is used for software key escrow, since the requirements for a secure
software key escrow solution exceed the requirements of a PVSS (e.g., sharing a
public key, or recovering only values encrypted under that key; we can achieve
both in the last application).
Certified mail:
When an escrow system and signature scheme are in place a simple “optimistic”
certified mail system is possible with an off-line post-office (an idea due to Micali
[Mi98]). The sender commits to the encrypted mail and the mail key, signs this
message, and sends it to the receiver together with a proof of that everything
was constructed correctly, which in our case is just the PVSS escrowing the
message key (as above) under the post-office key. The receiver sends back a
receipt acknowledging the above message and signs this message. The sender
then sends the mail decrypted (by sending the key). If the last message is not
received promptly (under an agreeable definition of “promptly”) the receiver
gets the post-office involved. The PVSS assures the receiver that the encrypted
key is recoverable by the post office (under any organization of the post office
agents).

References

BJY97. M. Bellare, M. Jakobsson, M. Yung. Round-Optimal Zero-Knowledge Argu-
ments Based on Any One-Way Function. Eurocrypt’97 pp. 280–305.

BRa. M. Bellare, P. Rogaway. Random Oracles are Practical In ACM CCCS ’94.
BMO. M. Bellare, S. Micali, R. Ostrovsky. Perfect Zero-Knowledge in Constant

Rounds. In ACM STOC ’90.
CF85. J. Cohen (Benaloh) and M. Fischer, A robust and verifiable cryptographically

secure election scheme, FOCS 1985, pp. 372–382.
BY86. J. C. Benaloh and M. Yung, Distributing the Power of a Government to En-

hance the Privacy of Voters, PODC 1986, pp. 52-62.

298 Adam Young and Moti Yung

CGS97. R. Cramer, R. Gennaro and B. Schoonmakers. A Secure and Optimally Effi-
cient Multi-Authority Election Scheme. In Eurocrpt’97, pages 103–118.

CGMA. B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. Verifiable Secret Sharing
and Achieving Simultaneity in the Presence of Faults. In FOCS ’85.

D92. Y. Desmedt. Threshold cryptosystems. AUSCRYPT ’92, 3–14.
F85. P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing.

In FOCS ’87.
FGMY. Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung. Optimal Resilience Proactive

Public Key Systems. In FOCS ’97.
FS86. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification

and Signature Problems. Crypto’86 pages 186–194.
FTY96. Y. Frankel, Y. Tsiounis, M. Yung. Indirect Discourse Proofs: Achieving Effi-

cient Fair Off-Line Cash. In Advances in Cryptology—Asiacrypt ’96.
FY95. Y. Frankel, M. Yung. Escrow Encryption Systems Visited: Attacks, Analysis

and Designs. In Advances in Cryptology—Crypto ’95, pages 222–235.
FY98. Y. Frankel and M. Yung. Distributed public-key cryptosystems. In Advances

in Public Key Cryptography—PKC ’98, volume 1431 LNCS, 1–13.
FY99. Y. Frankel, M. Yung. Cryptosystems Robust against “Dynamic Faults” Meet

Enterprise Needs for Organizational “Change Control.” In Financial Cryptol-
ogy 99.

FO98. E. Fujisaki and T. Okamoto, A Practical and Provably Secure Scheme for
Publicly Verifiable Secret Sharing and Its Applications. Eurocrypt’98.

FO99. E. Fujisaki and T. Okamoto, Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Crypto’99.

GK. O. Goldreich, A. Kahan. How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology, 9(3), pp. 167–190, 1996.

GM. S. Goldwasser, S. Micali. Probabilistic Encryption. In JCSC ’84.
IS93. T. Itoh, K. Sakurai. On the complexity of constant round ZKIP of posses-

sion of knowledge. In IEICE Transactions on Fundamentals of Electronics,
Communications, and Computer Sciences, vol. E76-A, No. 1, Jan. 1993.

Luby. M. Luby. Pseudorandomness and its Cryptographic Applications. Princeton
Press.

LWY95. A. Lenstra, P. Winkler, Y. Yacobi. A Key Escrow System with Warrant
Bounds. In Advances in Cryptology—Crypto ’95, pages 197–207.

Mi. S. Micali. Fair Public-Key Cryptosystems. Crypto’92, pp. 113–138.
Mi98. S. Micali. Certified E-mail with Invisible Post Offices. Weizmann Institute

Workshop, talk, June 98.
NR. M. Naor, O. Reingold, Efficient Cryptographic Primitives based on Decision

Diffie-Hellman. In FOCS ’97.
OY91. R. Ostrovsky and M. Yung, How to withstand mobile virus attacks, PODC

1991, pp. 51-61.
P00. D. Pointcheval, Chosen-Ciphertext Security for Any One-Way Cryptosystem.

PKC’00.
PS96. D. Pointcheval, J. Stern. Security Proofs for Signature Schemes. Eurocrypt’96.
PS00. G. Poupard, J. Stern. Fair Encryption of RSA keys, Eurocrypt’00.
S96. M. Stadler. Publicly Verifiable Secret Sharing. Eurocrypt’96.
Sch99. B. Schoenmakers. A simple Publicly Verifiable Secret Sharing Scheme and its

Application to Electronic Voting. Crypto’99.
TY. Y. Tsiounis, M. Yung. On the Security of ElGamal based Encryption. PKC

’98.

A PVSS as Hard as Discrete Log and Shareholder Separability 299

VT. E. Verheul, H. van Tilborg. Binding ElGamal: A Fraud-Detectable Alternative
to Key-Escrow Proposals. Eurocrypt ’97, pages 119–133.

YY98. A. Young, M. Yung. Auto-Recoverable and Auto-Certifiable Cryptosystems.
Eurocrypt’98.

	Introduction
	The Definition of a PVSS
	PVSS for Discrete Logs Based on the DL Problem
	Security and Correctness
	Applications

