
One Round Threshold Discrete-Log Key
Generation without Private Channels

Pierre-Alain Fouque and Jacques Stern

École Normale Supérieure, Département d’Informatique
45, rue d’Ulm, F-75230 Paris Cedex 05, France

{Pierre-Alain.Fouque,Jacques.Stern}@ens.fr

Abstract. Pedersen designed the first scheme for generating Discrete-
Log keys without any trusted dealer in 1991. As this protocol is simple
and efficient, it appeared to be very attractive. For a long time, this
robust algorithm has been trusted as being secure. However, in 1999,
Gennaro et al. proved that one of the requirements is not guaranteed :
more precisely, the property that the key is uniformly distributed in the
key space.
Their main objective was to repair the security flaw without sacrific-
ing on efficiency. As a result, the protocol became secure but somehow
unpractical. In particular, the “complaint phase”, in which cheaters are
thrown out, makes the scheme overly complex and difficult to deal with
in practical situations. In order to avoid this phase and other drawbacks
such as the initialization phase where private channels have to be cre-
ated, we present a one round scheme which generates a discrete-log key
with public channels only. Finally, we show how to improve the efficiency
of our algorithm when the number of servers increases.

Key words: Threshold DLK Generation, Publicly Verifiable Encryp-
tion, Adaptive and Concurrent Adversary

1 Introduction

In order to design threshold cryptosystems such as signature or public key en-
cryption schemes, the first stage consists in sharing the key generation procedure.
Indeed, if a trusted dealer is used in the key generation protocol, the security
of the overall distributed scheme depends on a unique server. Key generation
protocols are based on random distribution processes. The servers jointly gener-
ate a random key such that, at the end of the process, all honest servers have a
share of the secret key.

Improvements to the random generation of private keys for public key cryp-
tography usually fall into two areas : the distribution of a secret for discrete-log
based cryptosystems and the distribution of RSA keys.

The latter case is partially solved by the nice paper of Boneh and Franklin
[4]. However, the protocol does not allow to efficiently share RSA modulus with

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 300–316, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

One Round Threshold Discrete-Log Key Generation 301

strong primes and is not robust against cheaters. Following this paper, two ar-
ticles provide robustness using different techniques. The first one by Frankel et
al. [11], is based on the same methods as [4] and uses the protocol of Ben-Or,
Goldwasser and Widgerson [2] with private channels between each pair of par-
ticipants. Frankel et al. also propose protocols that make the scheme proactive
in [11,10,12]. In [22] Poupard and Stern present a protocol for two players which
avoids private channels. They introduce a new technique simpler and more effi-
cient that does not need to perform many rounds of communication. It is based
on a trapdoor version of the discrete logarithm problem. This kind of protocol is
well-suited to small group of participants which, from a practical point of view,
is the usual case. Gilboa has followed this method in [14].

Methods for distributing keys for discrete-log cryptosystems have been known
for a long time, starting with Feldman and Pedersen papers [9,20,21]. However,
a flaw in the requirements has been discovered and a first solution as well as a
security model for DKG protocols have been defined by Gennaro et al. in [13].
The solution has been improved by Canetti et al. in [7] to withstand adaptive
attacks. In [16], Lysyanskaya and Jarecki have proposed two new models of secu-
rity for this kind of attacks. The first one dealt also with concurrent adversaries
whereas the second presents erasure-free adaptive security with persistently in-
consistent players. The schemes are based on Pedersen Verifiable Secret Sharing
and consequently use private channels. Only, Jarecki’s solution uses public chan-
nels but it needs non-committing encryption scheme which makes the protocol
less efficient.

Whereas previous solutions to DKG prove security in the information-
theoretic model, we use here a computational model as the goal of such pro-
tocol is to construct a public key. Therefore, we eliminate the committing values
of [16,7] which are needed to prove the security against adaptive adversaries. To
cope with such adversaries, we design a one round protocol.

Following the new approach proposed by Poupard and Stern, the contribu-
tion of this paper is to introduce public channels in order to reduce the com-
munication rounds to a unique phase. If we use non-interactive protocol, we can
also ignore concurrent and adaptive adversaries as this kind of attackers make
no sense in a one round protocol. To achieve a non-interactive protocol, we
need primitives such that all servers can decide whether the other servers have
correctly performed their tasks and synchronous network to prevent “rushing at-
tacks”. Consequently, we need NIZK proofs secure in the random oracle model
and public channels. In appendix 8.1, we relax the assumption of synchronous
network and present a model where we can easily prevent the “rushing attack”
and adaptive adversaries at the price of a particular player.

1.1 Background and Related Work

Pedersen scheme [20] is a non-interactive scheme with broadcast and private
channels. The scheme is organized in two phases : in the first stage, the partici-
pants select the key while in the second, the key is distributed between servers.

302 Pierre-Alain Fouque and Jacques Stern

In the distributed phase, each server acts as the dealer in a Feldman protocol
[9] which uses verifiable secret sharing.

Participant Pi chooses xi ∈ Zq at random and picks t random numbers ai,k
in Zq. Then, he sets fi(X) =

∑t
k=0 ai,kX

k where ai,0 = xi. He privately sends
a secret share si,j = fi(j) mod q to participant Pj and broadcasts as public
information yi,j = gsi,j mod p, and Ai,k = gai,k mod p for k = 0, . . . , t. These
data can be used by all servers to check whether the random, xi chosen by Pi,
has been correctly distributed. Let

yi,j =
t∏

k=0

Aj
k

i,k mod p

If si,j is not the discrete logarithm of yi,j , participant Pj broadcasts a complaint
against Pi.

The complaints are managed through different strategies. A possible one
is the following : if more than t participants complain against server Pi, that
server is clearly faulty and is disqualified. Otherwise, Pi reveals the share si,j
for each complaining player Pj . If any of the revealed shares fails the equation
yi,j = gsi,j mod p, Pi is disqualified, otherwise Pi can still be qualified. One
can then define QUAL as the set of non-disqualified players. The public key is
defined as y =

∏
i∈QUAL yi where yi = Ai,0 = gxi mod p.

In the previous scheme, participant Pi chooses a random secret xi and shares
it between the other servers. Consequently, since disqualifications may occur
after the distribution phase, the selection phase which aims at unambiguously
fixing the public key, is not completed before the beginning of the distribution
phase. Hence, an adversary can compute the public key at the end of the dis-
tribution phase using the values Ai,0. Depending on this intended value and on
the goal of the adversary, this player can, for example, disqualify some members
in order to modify the public key distribution. Gennaro et al. describe an attack
in which two malicious members can create a bias in the distribution of the last
bit of the public key with probability 3/4 rather than 1/2. Their attack relies
on the fact that the following scheme uses secret channels between each member
such that we cannot know whenever an error appears which party has cheated
if both players are corrupted.
To avoid this attack, Gennaro et al. duplicate the scheme: in the first part, the
honest group is selected and in a second phase, the public value associated to
the shared secret is made public. In this case, the qualified group is determined
at the end of the first phase. In the first selection phase, each server commits a
random value with the unconditional scheme of Pedersen in [21] ; whereas in the
distribution phase, players release information enabling everyone to compute the
public value. If a player cheats in the second phase, but belongs to QUAL, the
other players run an error-correcting algorithm with the values that the cheating
player had distributed during the first phase.

The need for two phases comes from the fact that the private channels used
hide faulty players. Consequently, after the first phase which uses a symmetric
algorithm, we do not know if the cheating player is :

One Round Threshold Discrete-Log Key Generation 303

– the sender who has sent a false share within the private channel, or
– the receiver who claims that he has received a bad share.

Therefore, the second phase is needed to solve the “complaints”. However, we
can expect that in general no server will be corrupted. Thus this second phase
appears to be redundant and useless. Moreover, it is the most time consuming
phase of the protocol.

1.2 Our Solution

Our approach is focused on simplifying previous protocols. In a real implemen-
tation of private channels, an additional previous round must be executed to
share the secret key between each pair of servers. This first round is usually put
as a requirement for the channel but this phase involves penalties in practical
implementations.

Moreover, in private channels, we cannot know whether the faulty player
is the sender or the receiver in the first phase. The second phase of [13] is
therefore needed to solve the complaints coming from this ambiguity. Hence, if we
use a Publicly Verifiable Secret Sharing scheme (PVSS) and Publicly Verifiable
Encryption scheme (PVE) [5], we are able to immediately detect whether the
sender has sent faulty parts. Then, malicious players are caught and we do not
allow them in the group of qualified members. Consequently, our scheme consists
of only one phase where each participant shares his random number with a PVSS
scheme and transfers the share to the intended party with a PVE scheme in such
a way that all parties can verify that the receiver is able to recover his share.
As we use only one phase with a PVSS, all users must be able to determine the
public key at the end of this stage. Consequently, we use a synchronous network
to avoid “rushing attacks”, where an adversary waits until all other servers have
played before defining its own value. In this scenario, an adversary can choose
a public key or at least bias the distribution. Therefore, the release of values
Ai,0 will be made at a fixed time for each server. In 8.1 we show how to avoid s
ynchronous network with a new kind of player.
Complexity of the Protocol. In our scheme, all users have to verify a lot of
proofs. Particularly, if the numbers of participants is � and each of them shares his
secret random in � pieces, we have O(�2) shares in the scheme. Moreover, in our
scenario, all of these pieces are broadcast and must be verified by all participants.
We do not use a “complaint phase” in which a misleading player informs the
others that a verification does not work. Hence, the computation complexity is
O(k�2), whereas other schemes have a complexity in O(k�). However, we believe
that it does not tamper practicality since the number of participants is usually
limited. Finally, the hidden constant in the O-notation of other protocols makes
the comparison a bit meaningless.
Improvement of the Complexity. At first glance, our scheme seems to be
costly in terms of computations since all servers have to check the shares of the
others. However, as noted above in practical situations we have to deal only with
few servers. Furthermore, if we want to execute our protocol with more servers,

304 Pierre-Alain Fouque and Jacques Stern

we provide in appendix 8.2 a solution to speed-up the verification phase. Thanks
to a fast batch verification, we prove that the computation complexity of our
scheme is comparable with previous ones.

1.3 Outline of the Paper

In section 2, we define the security model for the distributed key generation
of discrete-log keys. In section 3, we recall some cryptographic primitives and
present a proof of fairness. In section 4, we describe the scheme and in section 5
the security proof. Finally, we discuss the complexity of our protocol in section 6.

2 The Security Model

2.1 The Network and the Players

Our game includes the following players connected through a synchronous broad-
cast channel : a set of � servers P1, . . . , P
 and an adversary who may control
up to t servers. A player Pi is considered good as long as he has followed the
protocol and faulty once he has deviated from the protocol.

2.2 Formal Definition

A t-out-of-� threshold key generation scheme is a protocol that allows any subset
of t+ 1 players out of � to generate the secret key, but disallows the generation
if fewer than t players participate to the protocol.

A t-out-of-� threshold key generation is composed by a key generation algo-
rithm that takes as input a security parameter k, the number � of generation
servers, and the threshold parameter t ; it outputs a public key PK, and a list
SK1, . . . , SK
 of shares of the private key associated to the list PK1, . . . , PK

of shares of the public key.

2.3 Security Requirements

The security requirements for a threshold key generation scheme are correctness
and secrecy. We present here the requirements for discrete logarithm public key
PK = y = gx mod p and SK = x. The SK is shared among the � servers.

The correctness property consists of the three followings items.

– All subsets of t+1 shares provided by honest players define the same unique
secret key x.

– All honest parties have the same value of public key y = gx mod p, where x
is the unique secret guaranteed by the previous item.

– The value x is uniformly distributed in Zq, and hence y is uniformly dis-
tributed in the subgroup generated by g.

One Round Threshold Discrete-Log Key Generation 305

The secrecy property means that no information on x can be learned by an
adversary beyond what follows from equality y = gx mod p. The secrecy condi-
tion can be more formally expressed in terms of simulatability. The simulation
enables to prove that the attacker A learns nothing on the random numbers
of the uncorrupted servers. More precisely, if A has knowledge of the t random
numbers of the corrupted servers and knows the public value y, a program called
simulator S can be executed in expected polynomial time, so that the view of
the adversary during a real run is indistinguishable from the output of the simu-
lator. Hence, the adversary cannot see if the distribution comes from a simulator
or from a real run. Consequently, as the simulator does not know the secret in-
formation, the output of the simulator cannot be used by the adversary to learn
knowledge on the secret numbers of the uncorrupted players.

2.4 The Adversarial Game

To define correctness and security against a static adversary, we consider the
following game played against such adversary.

A1 The adversary A has knowledge of the intended output of the distributed
discrete-log public key algorithm : the public key y.

A2 The attacker chooses to corrupt t servers. A learns all their secrets and she
actively controls their behavior.

A3 Each participant chooses a random number and shares it using a Publicly
Verifiable Secret Sharing scheme among the others.

3 Cryptographic Primitives

3.1 The Paillier Cryptosystem

Various cryptosystems based on randomized encryption schemes E(M), which
encrypt a message M by raising a basis g to the powerM and suitably randomiz-
ing the result, have been proposed so far [15,3,17,18,19]. Their security is based
on various “residuosity” assumptions and the trapdoor is a hidden subgroup
where discrete log computations are feasible. We call those cryptosystems trap-
door discrete logarithm schemes. As an important consequence of this encryption
technique, those schemes have homomorphic properties that can be informally
stated as follows:

E(M1 +M2) = E(M1) × E(M2) and E(k × M) = E(M)k

Paillier has presented three closely related such cryptosystems in [19]. We
only recall the first one.

This cryptosystem is based on the properties of the Carmichael lambda func-
tion λ(N) in ZN2

∗. We refer to λ(N) as λ. We recall here the main two theorems:
for any w ∈ ZN2

∗,

wλ = 1 mod N, and wNλ = 1 mod N2

306 Pierre-Alain Fouque and Jacques Stern

Key Generation. Let N be an RSA modulus N = pq, where p and q are prime
integers. Let G be an integer whose order is a large multiple of N modulo N2.
The public key is PK = (N,G) and the secret key is SK = λ.

Encryption. To encrypt a message M ∈ ZN , randomly choose u in ZN
∗ and

compute the ciphertext c = GMuN mod N2.

Decryption. To decrypt c, compute M =
L(cλ mod N2)
L(Gλ mod N2)

mod N where the

L-function takes in input elements from the set SN = {x < N2|x = 1 mod N}
and computes L(x) = x−1

N .
The integers cλ mod N2 and Gλ mod N2 are equal to 1 when they are raised

to the power N so they are N th roots of unity. Furthermore, such roots are of the
form (1+N)β = 1+βN mod N2. Consequently, the L-function allows to compute
such values β mod N and L((GM)λ mod N2) = M × L(Gλ mod N2) mod N .

The Residuosity Class Problem. Assume the order of G is a multiple of N .
A number v is said to be a N th residue modulo N2 if there exists a number
u ∈ ZN2

∗ such that v = uN mod N2. For w ∈ ZN2
∗, we call N th residuosity

class of w with respect to G the unique integer r ∈ ZN for which there exists
u ∈ ZN

∗ such that GruN = w mod N2.
The Composite Residuosity Class Problem is defined to be the computational

problem of computing the class of a random element in ZN2
∗.

Security. This problem that exactly consists in inverting the cryptosystem, is
believed to be intractable. The semantic security is based on the difficulty to
distinguish N th residues modulo N2. We refer to [19] for details.

3.2 A Proof of Fairness

In this section, we present a proof in the style of [23] which enables to prove
that decryption of Y = GxuN mod N2 in base G allows to recover the discrete
logarithm of y = gx mod p in base g, where g is of order a prime q in Zp

∗.
We describe a non-interactive statistical zero-knowledge proof of the existence

of two small numbers σ and τ so that |σ| < A and |τ | < B which verify that
GσY −τ is a N th residue for στ−1 = logg y. We prove the security of the proof
in the random oracle model.

Description of the Proof. Let x ∈ [0, S[be the secret value, and A, B and
S three integers such that |A| ≥ |B| · |S| + k′ where k′ is a security parameter.
The value B is the output length of a hash function H.

The prover chooses a random r in [0, A[and a random s ∈ ZN
∗. Then, he com-

putes t = (gr mod p,GrsN mod N2). Let e be the hash valueH(g,G, y, Y, gr mod
p,GrsN mod N2). Next, the prover computes z = r + ex and w = sue mod N .
If z
∈ [0, A[, the prover restarts with another random values r and s until
z ∈ [0, A[. The proof is the triple (e, z, w) ∈ [0, B[×[0, A[×[0, N [. It is checked
by the equations e = H(g,G, y, Y, gzy−e mod p,GzwNY −e mod N2), z ∈ [0, A[,
and yq = 1 mod p.

One Round Threshold Discrete-Log Key Generation 307

Completeness. The execution between a prover who knows the secret x and a
verifier is successful with overwhelming probability if SB/A < 1/2k

′
is negligible.

Proof: The verifier has access to (e, z, w) where z = r + ex < A, w = sue mod
N , and e = H(g,G, y, Y, gr mod p,GrsN mod N2). He can check whether z <
A, gr = gr+ex(gx)−e = gzy−e mod p, and GrsN = Gr+ex(sue)N (GxuN)−e =
GzwNY −e mod N2.

If the prover follows the protocol, the proof fails only if z ≥ A. The probability
of failure of such an event taken over all possible choice of r is smaller than
SB/A. Consequently, the execution of the protocol is successful with probability
greater than 1 − SB

A . Thus, if SB/A is negligible, the probability of success is
overwhelming. �

Soundness. If the verifier accepts the proof, with probability ≥ 1/B + ε where ε
is a non-negligible quantity, then using the prover as a “black-box” it is possible
to compute σ and τ such that |σ| < A and |τ | < B such that στ−1 = x mod q,
gx = y mod p and GσY τ is a N th residue modulo N2.
Proof: For a given t, if a prover can find two triples (e, z, w) and (e′, z′, w′)
which pass the proof with non-negligible probability, he can obtain the following
equalities : Gz−z′

(w/w′)Ne = Y e−e′
mod N2 and gz−z

′
= ye−e

′
mod p.

Hence, if we note σ = z − z′ and τ = e − e′ :

Gσ(w/w′)Ne = Y τ mod N2 and gσ = yτ mod p (1)

and |σ| < A and 0 < |τ | < B.

As yq = 1 mod p and as there is a unique subgroup of order q in Zp
∗, the

value y is in 〈g〉. Hence, from the second equality, we deduce that στ−1 mod q
is the discrete log of y.

We note d = gcd(σ, τ). As q is a prime number, we get σ/d = τ/d×x mod q.
Let σ0 = σ/d, τ0 = τ/d. Knowledge of (σ0, τ0) enables to compute the secret
x = σ0τ0

−1 mod q.

Let x̃ be the result of the decryption of Y . If gx̃ = y mod p, we are done.
Otherwise, we search the values σ0 and τ0 where σ0 = σ/d, τ0 = τ/d and
d = gcd(σ, τ) to find x. In [23], Poupard and Stern describe how to find σ0 and
τ0 from x̃ and N provided that the proof is correct. They show that the smallest
vector of the lattice of dimension two where a basis is ((N, 0), (x̃, 1)) corresponds
to the vector (σ0, τ0) whenever N ≥ 2

√
2AB. Hence, as the dimension of the

lattice is two, Gauss algorithm can be used to efficiently recover the smallest
vector in O(logN).

Consequently, if the proof is well-formed, participant Pi can always recover
the intended share x which matches y = gx mod p. This fairness property is
useful to guarantee that the receiver will receive the correct data. �

Zero-Knowledge. This proof is a non-interactive statistical zero-knowledge
proof.

308 Pierre-Alain Fouque and Jacques Stern

Proof: We can construct a simulator that simulates the adversary’s view without
knowing the value x in the random oracle model. When an uncorrupted player
is supposed to generate a proof for a given y, Y , the simulator chooses e ∈ [0, B[,
z ∈ [0, A[and w ∈ ZN

∗ at random, and defines the value of the random ora-
cle at (g,G, y, Y, gzy−e mod p,GzwNY −e mod N2) to be e. With overwhelming
probability, the simulator has not yet defined the random oracle at this point.
The proof is just (z, w, e). It is straightforward to verify that the distribution
produced by this simulator is statistically close to perfect provided that BS/A
is negligible. �

4 The Scenario

Each server has to verify all proofs broadcast by other players and to select the
qualified group of servers. All players are considered as probabilistic polynomial
time Turing machines. In the initialization stage, each participant performs the
key generation algorithm of Paillier’s cryptosystem. For i = 1 to �, the public
keys PKi = (Gi, Ni) are published and the server Pi secretly stores SKi. The
value Ni is a RSA modulus, Gi is an element in ZN2

i

∗ of order a multiple of Ni

and SKi = λ(Ni).
We consider the following scenario :

– Participant Pi generates a random si,0, sets ai,0 = si,0 and chooses ai,k at
random from Zq for 1 ≤ k ≤ t. The numbers ai,0, . . . , ai,t define the polyno-
mial fi(X) =

∑t
k=0 ai,kX

k ∈ Zq[X]. Then, he computes si,j = fi(j) mod q.
He broadcasts : for k = 0, . . . , t, Ai,k = gai,k mod p and yi,j = gsi,j mod p,
Yi,j = G

si,j

j uNi
i,j mod N2

j , and a proof (ei,j , wi,j , zi,j).
– Then, for each 1 ≤ i, j ≤ �, the servers verify that :

t∏

k=0

Aj
k

i,k =
t∏

k=0

gai,kj
k

= g
∑t

k=0 ai,kj
k

= gfi(j) mod p

and check whether gfi(j) mod p is equal to yi,j in order to verify that the
distribution is correct. The servers also verify the proofs (ei,j , wi,j , zi,j) and
if yqi,j = 1 mod p for 1 ≤ i, j ≤ �.

– The set QUAL of qualified servers is defined from the players who have
correctly played. The others are disqualified.

– Participant Pj decrypts Yi,j and obtains si,j for 1 ≤ i ≤ �. He stores the parts
si,j for i ∈ QUAL and computes the public key as

∏
i∈QUALAi,0 = gf(0) mod

p if we note f(X) =
∑

i∈QUAL fi(X). The share of the key obtained by
participant Pj is equal to

∑

i∈QUAL

si,j = f(j) mod q

The secret key s is shared in polynomial form with f(j) mod q and in additive
form with xj mod q between all participants belonging to the set QUAL.

One Round Threshold Discrete-Log Key Generation 309

5 Security Proof

In this section, we prove the security of the scheme following the security model
defined in section 2.4. We have to ensure the correctness and the secrecy of the
scheme.

Correctness means that all players obtain the same key at the end of the
protocol, that t + 1 correct shares allow to recover the secret key and that the
secret value is uniformly distributed in the subgroup generated by g modulo p.

Secrecy means that no information on x can be learned by the adversary
except what follows from equation y = gx mod p.

Theorem 1 The sharing scheme is correct against adversaries.

Proof: Let us assume the existence of an adversary A able to break t servers.
Correctness. It is clear that, at the end of the protocol, each server obtains the
same public key because each honest server has received the same information
and deduced the same set QUAL.

At the end of the protocol, the secret value is shared in polynomial form such
that any t+ 1 correct shares enable to interpolate the polynomial f of degree t
whose constant coefficient represent the secret key s.

Finally, the public key y is uniformly distributed in the subgroup 〈g〉 because
if one of the honest server is not disqualified and has selected his additive share
xi at random, the secret

∑
i∈QUAL xi mod q is randomized uniformly in Zq.

Therefore, the value y is uniformly randomized in 〈g〉. �

Theorem 2 Under the decisional composite residuosity assumption and in the
random oracle model, the sharing scheme is secure against static adversaries.

Proof: Secrecy. We describe a simulator S which takes as input an element
y ∈ Zp

∗ in the subgroup generated by g and produces an output distribution
which is polynomially indistinguishable from A’s view of a run of the protocol
that ends with y as its public key output.

Let A the adversary who knows y in phase A1 and corrupts t servers at the
beginning of the protocol in phase A2. A learns all their secrets and she actively
controls their behavior.

Here, we can take advantage of the synchronized network. We have to sim-
ulate the distribution of all servers. However, when we simulate the run of the
protocol, the synchronization is not needed and we can wait until all malicious
servers play. This allows us to determine the public value y∗

i of a specific good
server P ∗

i such that we do not know its internal state.
Hence, each server Pi, except P ∗

i , chooses at random xi mod q and t other
values ai,k for k = 1, . . . , t. He sets fi(X) =

∑t
k=0 ai,kX

k ∈ Zq[X]. Then, he
computes Ai,k = gai,k mod p for k = 0, . . . , t and calculates yi,j = gfi(j) mod p

and Yi,j = G
fi(j)
j u

Nj

i,j mod N2
j . The distribution of these values and the distribu-

tion of those of the real protocol are equal.
Now, we have to simulate the distribution of player P ∗

i . If we want the ending
value to be y, let y∗

i = A∗
i,0 = y ·∏i∈QUAL\{P∗

i }(yi)
−1 mod p, as the set QUAL is

310 Pierre-Alain Fouque and Jacques Stern

defined at the end of the synchronization. We choose at random t values f∗
i (ij)

for the t corrupted servers {i1, . . . , it} and send these values to these servers.
With the Lagrange interpolation formula, we can compute the public values y∗

i,j

of all other shares as :

y∗
i,j = gf

∗
i (j) = (y∗

i)
λS

j,0 ·
t∏

j=1

g
λS

j,ij
f∗

i (ij)

where λSi,j =
∏
j′∈S\{j}

i−j′

j−j′ and S = {0, i1, . . . , it}.
Here we use an assumption which seems weaker than the assumption used

in order to prove the semantic security of the Paillier cryptosystem. In fact,
we have gx mod p and GxuN mod N2 whereas the semantic security has to de-
cide whether the value GxuN mod N2 encrypts x or not. To simulate Y ∗

i,j , we
can therefore choose at random xi,j ∈ ZNj and uj ∈ ZNj

∗, and set Y ∗
i,j =

G
xi,j

j u
Nj

j mod N2
j .

Player P ∗
i has an inconsistent internal state because he does not know the

discrete-log of yi in basis g modulo p. However, this player will not be attacked
because in this model all corrupted servers are chosen at the beginning of the
game A.

Finally, in the simulation, the distribution produced by the simulator is sta-
tistically close to perfect. In the random oracle model, where the simulator has a
full control of the values returned by the hash function H, we define the value of
H at (g,G, y, Y, gzy−e, GzwNY −e) to be e. With overwhelming probability, the
simulator has not yet defined the random oracle at this point so the adversary
A cannot detect the twist. �

6 On the Complexity of The Protocol

All servers must perform �×(�−1) verifications of the form yi,j =
∏t
k=0A

jk

i,k mod
p for 1 ≤ i ≤ � and for 1 ≤ j ≤ � except for the � shares generated by themselves.
Finally, each server must decrypt its part of the secret x.

In this case, Pi has computed the t+ 1 values Ai,k = gai,k mod p and the 3�
values si,j = fi(j), yi,j = gsi,j mod p, Yi,j = G

si,j

j u
Nj

i,j mod N2
j .

For the proofs, each server Pj has to check whether ei,j =
H(g,Gj , yi,j , Yi,j , g

zi,jy−ei,j mod p,G
zi,j

j w
Nj

i,j Y
−ei,j

i,j mod N2
j) and yqi,j = 1 mod p

for each 1 ≤ j ≤ � and for each 1 ≤ i ≤ � except for the proofs generated by Pi.
In this case, Pi has to compute the proofs (ei,j , zi,j , wi,j) where the heavy

calculation is to compute wi,j = si,ju
ei,j

i,j mod Nj .
Finally, each server decrypts its own part xj of the common secret x. To

make this operation in an efficient way, the server Pj computes the product
Yj =

∏
i Yi,j = Gj

∑
i xi,j mod Nj

2 using � − 1 multiplications and performs a
single decryption on Yj to recover xj mod Nj . This operation consists in a single
exponentiation as seen in 3.1. As xj =

∑
i xi,j is upper bounded by �
+2 × q,

and � × log2(q�) < log2(Nj) for all j, the share xj mod Nj is equal to xj .

One Round Threshold Discrete-Log Key Generation 311

The complexity of our scheme is in O(k�2) modular exponentiations where � is
the number of servers and k a security parameter whereas the complexity of [13,7]
is in O(k�). However, for a small number of participants, our protocol is more
efficient. In an appendix 8.2, we provide an improvement of the computation
cost when � becomes large and show that the complexity is of the same order as
previous schemes.

7 Conclusion

In this paper, we have proposed a threshold discrete-log key generation scheme.
We have described a distributed key generation with public channels using one
round of communication. Since the communication has been reduced, the com-
putational cost of the scheme increases, but if the number of servers is limited,
the overhead is not significant.

Our approach tends to simplify previous work in an area where recent works
have resulted in making schemes complex. Moreover, a second phase is not nec-
essary if we use public channel instead of private channel as was done before.
Our protocol is well-suited for small groups of servers. It runs in one round and
does not require interaction between servers.

References

1. M. Bellare, J. A. Garay, and T. Rabin. Fast Batch Verification for Modular Expo-
nentiation and Digital Signatures. In Eurocrypt ’98, LNCS 1403, pages 236–250.
Springer-Verlag, 1998. Available at http://www-cse.ucsd.edu/users/mihir/.

2. M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In Proceedings of the 20th
STOC, ACM, pages 1–10, 1988.

3. J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, 1987.
4. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In Crypto

’97, LNCS 1294, pages 425–439. Springer-Verlag, 1997.
5. J. Camenisch and I. Damg̊ard. Verifiable Encryption and Appli-

cations to Group Signatures and Signature Sharing. Available at
http://philby.ucsd.edu/cryptolib/1999/99-08.html, march 1999.

6. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. In
Journal of Cryptology, Volume 13, pages 143–202. Springer-Verlag, 2000.

7. C. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive Security
for Threshold Cryptosystems. In Crypto ’99, LNCS 1666, pages 98–115. Springer-
Verlag, 1999.

8. Y. Dodis and S. Micali. Parallel Reducibility for Information-Theretically Secure
Computation. In Crypto ’00, LNCS 1880, pages 74–92. Springer-Verlag, 2000.

9. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Pro-
ceedings of the 28th annual Symposium on the Foundations of Computer Science.
IEEE, 1987.

10. Y. Frankel, P. Gemmel, Ph. MacKenzie, and M. Yung. Optimal-Resilience Proac-
tive Public-Key Cryptosystems. In Proc. 38th FOCS, pages 384–393. IEEE, 1997.

312 Pierre-Alain Fouque and Jacques Stern

11. Y. Frankel, P. Gemmel, Ph. MacKenzie, and M. Yung. Proactive RSA. In Crypto
’97, LNCS 1294, pages 440–454. Springer-Verlag, 1997.

12. Y. Frankel, P. MacKenzie, and M. Yung. Adaptively-Secure Optimal-Resilience
Proactive RSA. In Asiacrypt ’99, LNCS. Springer-Verlag, 1999.

13. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key
Generation for Discrete-Log Cryptosystems. In Eurocrypt ’99, LNCS 1592, pages
295–310. Springer-Verlag, 1999.

14. N. Gilboa. Two Party RSA Key Generation. In Crypto ’99, LNCS 1666, pages
116–129. Springer-Verlag, 1999.

15. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

16. S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography : In-
troducing Concurrency, Removing Erasures. In Eurocrypt’ 00, LNCS 1807, pages
221–242. Springer-Verlag, 2000.

17. D. Naccache and J. Stern. A New Cryptosystem based on Higher Residues. In
Proc. of the 5th CCS, pages 59–66. ACM press, 1998.

18. T. Okamoto and S. Uchiyama. A New Public Key Cryptosystem as Secure as
Factoring. In Eurocrypt ’98, LNCS 1403, pages 308–318. Springer-Verlag, 1998.

19. P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In
Eurocrypt ’99, LNCS 1592. Springer-Verlag, 1999.

20. T.P. Pedersen. A Threshold Cryptosystem without a Trusted Party. In Euro-
crypt’91, LNCS 547, pages 522–526. Springer-Verlag, 1991.

21. T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Crypto’91, LNCS 576, pages 129–140. Springer-Verlag, 1991.

22. G. Poupard and J. Stern. Generation of Shared RSA Keys by Two Parties. In
Asiacrypt ’98, LNCS 1514, pages 11–24. Springer-Verlag, 1998.

23. G. Poupard and J. Stern. Fair Encryption of RSA Keys. In Proceedings of Eurocrypt
2000, Lecture Notes in Computer Science. Springer-Verlag, 2000.

8 Appendix

8.1 Asynchronous Network

In some cases the synchronous network seems to be a strong requirement. We
use such network to cope with “rushing attacks”. A simple solution is to force
a Incorruptible Third Party (ITP) to play at the end. We call this third party
“incorruptible” since we do not require a “trusted” party, but only honest. At
the beginning, this server picks a random value a in Zq and commits H(a) using
the hash function H. The servers play and compute y′ = gx

′
. At the end, the

ITP releases a to all players. The secret value is x = x′ + a mod q. Each server
can compute its share of the secret as xi = x′

i + a mod q. This is due to the
Lagrange interpolation since the sum of the Lagrange coefficients is equal to 1.
Indeed, if S is a subset of cardinality t+ 1,

f(0) =
∑

i∈S
λSi,0f(i) mod q

One Round Threshold Discrete-Log Key Generation 313

Therefore, if we share the constant polynomial c(x) = 1 for all x, the value in 0
is always 1 and we obtain 1 =

∑
i∈S λSi,01. Consequently, if we write f(i) = x′

i,

f(0) + a = (
∑

i∈S
λSi,0f(i)) + a =

∑

i∈S
λSi,0(f(i) + a) mod q

Note 1. In this model, simulations against adaptive adversaries are easy since
we can fix the value of the ITP in the random oracle model. We can see it as
the “persistently inconsistent player” of [16].
Note 2.Dodis and Micali in [8] proved that a class of Secure Function Evaluation
(SFE) remains secure if we compose simple and secure protocols in sequence or
in parallel in the information-theoretic model. They use two models of parallel
reducibility (or parallel composition of protocols) that they called concurrent
reducibility and synchronous reducibility. The Concurrent reducibility applies
when the order of sub-protocol calls is not important whereas the Synchronous
reducibility applies when the sub-protocols must be executed simultaneously.
Their results [8] hold only in the “information-theoretic model” where we allow
private channels and not in the “computational model” that we need in our
protocol. In [6], Canetti proved the same results in the computational model but
only for concurrent reducibility and not for synchronous reducibility. Therefore,
the asynchronous network scheme that we propose in this appendix can be also
proved using Canetti’s theorem.

8.2 Improvement of the Complexity

When the number of servers is relatively small, our protocol is practical. How-
ever, it can be unpractical when the number � of servers becomes larger. Here,
we provide methods to reduce the computation cost in this situation. We present
the computation cost in term of multiplications and we show that asymptoti-
cally our protocol has the same order of magnitude than others, i.e. O(�3 log(�))
multiplications. This is achieved by reducing all verifications of our protocol to
three computations which are used in all protocols. This last calculation rep-
resents the heavy part of the computation cost and cannot be avoided in the
verifiable interpolation phase.

Since bad players only appear in rare situations, we aim to design efficient
protocols when all players are honest. However, we must be able to detect when-
ever bad players try to cheat and therefore, we require fast detection of active
malicious servers. When a malicious server is detected, we need to carry out the
protocol of section 6 or to reboot the system as our protocol is state-free.

The first remark is that we cannot avoid the complexity factor O(�2k), where
k is the bit-length of |p| or |Nj |/2, from the communication point of view, since
in one round, all servers must be able to test whether other servers have cor-
rectly played. But, as today’s networks have large bandwidth and high speed
performance, the bottleneck is not the network communication but the compu-
tation load. Consequently, our main objective is to decrease the computation
complexity for detecting bad servers.

314 Pierre-Alain Fouque and Jacques Stern

It is straightforward to see that the larger complexity factor comes from the
verifications of gfi(j) =

∏t
k=0A

jk

i,k mod p. We have to check �2 such equations
while the previous schemes only require �. Here we reduce the computation of
each player to 3� such equations.
Batch Verification. Bellare et al. in [1] describe algorithms to perform fast
batch verification for modular exponentiation and digital signatures. In this pa-
per, they present techniques to test whether many instantiations (xi, yi)ni=1 sat-
isfy the equations gxi = yi mod p. The naive method requires n exponentiations.
However, if we use probabilistic batch tests, the sequence of modular expo-
nentiations can be computed significantly faster than the naive re-computation
method.

They also describe an efficient algorithm to compute
∏n
i=1 a

bi
i where the cost

is k+nk/2 modular multiplications if we note k the greatest bit-length of the ele-
ments bi (bi = bi[k] . . . bi[1]). This number is strictly less than n exponentiations
followed by n−1 multiplications where the cost of a single exponentiation ab can
be estimated as 3k/2 multiplications if k is the bit-length of b. This algorithm
is hereafter called FastMult.

Algorithm FastMult((a1, b1), . . . , (an, bn))
a := 1;
for j = k downto 1 do

for i = 1 to n do if bi[j] = 1 then a := a.ai;
a := a2;

return a
This algorithm does k multiplications in the outer loop and nk/2 multiplica-

tions on the average in the inner loop. Hence, for computing y we get a total of
k + nk/2 multiplications.

Finally, they also provide a batch verification of the following form: given a
set of points, determine whether there exists a polynomial of a certain degree,
which passes through all these points. More formally, let S = (α1, α2, . . . , αm)
denote a set of points. We define the relation DEGF,t,(β1,β2,... ,βm)(S) = 1 iff there
exists a polynomial f(x) such that the degree of f(x) is at most t, and for all
i ∈ {1, . . . ,m}, f(βi) = αi, assuming that all the computations are carried out
in the finite field F . Let the batch instance of this problem be S1, . . . , Sn, where
Si = (αi,1, . . . , αi,m). The batch instance is correct if DEGF,t,(β1,... ,βm)(Si) = 1
for all i = 1, . . . , n; incorrect otherwise. This test is called Random Linear
Combination Test.
Random Linear Combination Test. This algorithm takes as input n sets
S1, . . . , Sn where Si = (αi,1, . . . , αi,m); β1, . . . , βm, security parameter k, and a
value t and checks whether for all i ∈ {1, . . . , n} there exists a polynomial fi(x)
such that deg(fi) ≤ t and fi(β1) = αi,1, . . . , fi(βm) = αi,m.
The algorithm works as follows:

1. Pick r∈RF
2. Compute γi = rnαn,i + . . . + rα1,i. This can be efficiently computed with

the Horner algorithm.

One Round Threshold Discrete-Log Key Generation 315

3. If DEGF,t,(β1,... ,βm)(γ1, . . . , γm) = 1, then output “correct”, else output
“incorrect”.

Notation If fi(x) = amxm+ . . .+a0, where am
= 0, we denote by fi(x)|t+1

the polynomial amxm + . . .+ at+1x
t+1. Consequently, for m ≤ t, fi(x)|t+1 must

be equal to 0.
The polynomial F (x) =

∑n
i=1 r

ifi(x) is of degree at most t, and, therefore, it
holds that

∑n
i=1 r

ifi(x)|t+1 must be equal to 0. This is an equation of degree n
in the unknown r and hence has at most n roots. Therefore, to output “correct”
when in fact the instance is incorrect, r must be one of the roots of the equation.
This algorithm fails with probability at most n

|F| , which is a negligible quantity.
The running time of this algorithm is O(nm) while the naive method which
consists in computing the polynomial interpolation with t+1 points and checking
for each of them requires O(m2n) multiplications.
Application to Our Situation. First of all, we note that the computation cost
of checking whether the �2 values yi,j encrypt gfi(j), require �2 exponentiations.
In fact, we do not need to exactly test whether these equations hold but rather
whether a server send false shares. Obviously, each server must verify its own
shares but can only check whether the others are correct with high probability.

To this end, we can use the Random Linear Combination Test. We need
to run this algorithm “in the exponents” and the proof follows from the fact that
g is a primitive element in the subgroup of Zp

∗ of order q. In our situation, we
have values αi,j correspond to yi,j and values βi to i.

The algorithm works as follows:

1. Pick r∈RZq

2. Compute γi = αr
�

,i × . . . × αr1,i. This can be efficiently computed from the
values yi,1, . . . , yi,
 using � times the FastMult algorithm.

3. If DEGZq,t,(1,... ,
)(γ1, . . . , γ
) = 1, then output “correct”, else output “incor-
rect”.

The DEG consists in checking whether for all j = 1, . . . , �, gF (j) =
∏t
k=0A

jk

F,k

is equal to γj . The values AF,k correspond to the coefficients of the polynomial F
and are equal to g

∑�
i=1 ai,kr

i

=
∏

i=1A

ri

i,k. In fact, γj is equal to yr
�

,j× . . .×yr1,j =

gf�(j)r�+...+f1(j)r = g
∑�

i=1 r
ifi(j) = gF (j) mod p.

Consequently, we have to compute the � values γj , the t+1 values AF,k and
the � relations DEG.

This algorithm fails with probability at most

q which is a negligible quantity.

As usual, we estimate t as �/2 and accordingly, the complexity of the scheme
in the number of multiplications is:

1. To compute the values γj , we need � times calls to the FastMult algorithm
for � products of powers where the size of the exponents are in �|q|; hence,
� × [�|q| +

2�|q|] = O(�3|q|).
2. To compute the coefficients of gF (x), we need (t + 1) calls to the FastMult

algorithm for � products of powers where the size of the exponents are in
|q|�; hence, (t+ 1) × [|q|�+
2

2 |q|] = O(�3|q|).

316 Pierre-Alain Fouque and Jacques Stern

3. To check the relation DEG, we need � calls to the FastMult algorithm for
(t + 1) products of powers where the size of the exponents are in t log(�);
hence � × [t log(�) + t(t+1)

2 log(�)] = O(�3 log(�)).

This algorithm requires O(�3|q| + �3 log(�)) multiplications.
The previously proposed algorithms cannot used this trick as they have only

one value in all set Si. Therefore, each server j has to perform � calls to the
FastMult algorithm to verify whether yj =

∏t
k=0A

jk

i,k for i = 1 to �. This leads
to � times the t + 1 products of powers where the size of the exponents are
in t log(�); hence, �[t log(�) + t(t+1)

2 log(�)] = O(�3 log(�)). If we have used this
method whereas the Random Linear Combination Test “in the exponents”,
the complexity will have to be O(�4 log(�)).

In general, |q| = 160 and if we take � = 32 = 25, � log(�) = 160. Therefore,
when the number of server is greater than 32, our batch verification method
becomes to be more efficient than the standard method.

In order to be self-contained, we provide here an estimation of the complexity
of the proofs. The verifications of the �2 proofs has a complexity negligible in
relation to the previous operation. We can essentially summarize the proofs as
checking whether the precomputed value gr is equal to gz × y−e mod p and Gr

is equal to GzwNY −e mod N2. We have to carry out �2 products of two or three
numbers where the size of the exponents are in |A| or |N |. Therefore, if we call
the FastMult algorithm, we obtain |A|�2 for the verifications in Zp

∗ and |N |�2 for
the proofs in N2. Consequently, the computation complexity is upper bounded
by the Random Linear Combination Test in the exponent for all schemes.

	Introduction
	Background and Related Work
	Our Solution
	Outline of the Paper

	The Security Model
	The Network and the Players
	Formal Definition
	Security Requirements
	The Adversarial Game

	Cryptographic Primitives
	The Paillier Cryptosystem
	A Proof of Fairness

	The Scenario
	Security Proof
	On the Complexity of The Protocol
	Conclusion
	Appendix
	Asynchronous Network
	Improvement of the Complexity

