Skip to main content

Statistical and Neural Approaches for Estimating Parameters of a Speckle Model Based on the Nakagami Distribution

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

  • 1289 Accesses

Abstract

The Nakagami distribution is a model for the backscattered ultrasound echo from tissues. The Nakagami shape parameter m has been shown to be useful in tissue characterization. Many approaches to estimating this parameter have been reported. In this paper, a maximum likelihood estimator (MLE) is derived, and a solution method is proposed. It is also shown that a neural network can be trained to recognize parameters directly from data. Accuracy and consistency of these new estimators are compared to those of the inverse normalized variance, Tolparev-Polyakov, and Lorenz estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdi, A., Kaveh, M.: Performance Comparison of Three Different Estimators for the Nakagami m Parameter Using Monte Carlo Simulation. IEEE Communications Letters 4 (2000) 119–121

    Article  Google Scholar 

  2. Alzer, H.: On Some Inequalities for the Gamma and Psi Functions. Math. Comp. 66 (1997) 373–389

    Article  MATH  MathSciNet  Google Scholar 

  3. Clifford, L., Fitzgerald, P., James, D.: Non-Rayleigh First-Order Statistics of Ultrasonic Backscatter from Normal Myocardum. Ultrasound in Med. and Biol. 19 (1993) 487–495

    Article  Google Scholar 

  4. Iskander, D. R., Zoubir, A. M., Boashash, B.: A Method for Estimating the Parameters of the K Distribution. IEEE Trans. Sig. Proc. 47 (1991) 1147–1151

    Article  Google Scholar 

  5. Liu, M. C., Kuo, W., Sastri, T.: An Exploratory Study of a Neural Network Approach for Reliability Data. Analysis Quality and Reliability Eng. Intl. 11 (1995) 107–112

    Article  Google Scholar 

  6. Nakagami, M.: The m-distribution: A general formula of intensity distribution of rapid fading. in Statistical Methods in Radio Wave Propagation W. C. Hoffman, Ed. New York: Pergamon (1960) 3–36

    Google Scholar 

  7. Shankar, P. M.: A General Statistical Model for Ultrasonic Backscattering from Tissues. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 47 (2000) 727–736

    Article  Google Scholar 

  8. Smolýková, R., Wachowiak, M. P., Elmaghraby, A. S., Zurada, J. M.: A Neuro-Statistical Approach to Ultrasound Speckle Modeling. Proc. ISCA 13th Intl. Conf., Honolulu, HI (2000) 94–97

    Google Scholar 

  9. Wachowiak, M. P., Smolýková, R., Zurada, J. M., Elmaghraby, A. S.: A Neural Approach to Speckle Noise Modeling. Intelligent Engineering System Through Artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining and Complex Systems 10 ASME Press, New York (2000) 837–842

    Google Scholar 

  10. Wachowiak, M. P., Smolýková, R., Elmaghraby, A. S., Zurada, J. M.: Classification and Estimation of Ultrasound Speckle Noise With Neural Networks. Proc. on IEEE International Symposium on Bio-Informatics and Biomedical Engineering. Arlington, Virginia (2000) 245–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wachowiak, M.P., Smolíková, R., Milanova, M.G., Elmaghraby, A.S. (2001). Statistical and Neural Approaches for Estimating Parameters of a Speckle Model Based on the Nakagami Distribution. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics