Skip to main content

Face Detection by Aggregated Bayesian Network Classifiers

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

  • 1280 Accesses

Abstract

A face detection system is presented. A new classification method using forest-structured Bayesian networks is used. The method is used in an aggregated classifier to discriminate face from non-face patterns. The process of generating non-face patterns is integrated with the construction of the aggregated classifier using the bagging method. The face detection system performs well in comparison with other well-known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996.

    Google Scholar 

  2. A. Colmenarez and T. Huang. Face detection with information-based maximum discrimination. In Proc. of CVPR’97, pages 782–787, 1997.

    Google Scholar 

  3. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, Inc., 1973.

    Google Scholar 

  4. M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons, 1984.

    Google Scholar 

  5. S. Kullback. Information Theory and Statistics. John Wiley, 1959.

    Google Scholar 

  6. T.K. Leung, M.C. Burl, and P. Perona. Finding faces in cluttered scenes using random labeled graph matching. In Proc. of The Fifth International Conference on Computer Vision, pages 637–644, 1995.

    Google Scholar 

  7. B. Moghaddam and A. Pentland. Probabilistic visual learning for object representation. IEEE PAMI, 19(7):696–710, 1997.

    Google Scholar 

  8. E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In Proc. of CVPR’97, pages 130–136, Puerto Rico, 1997.

    Google Scholar 

  9. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  10. H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE PAMI, 20(1):23–38, 1998.

    Google Scholar 

  11. H. Schneiderman and K. Kanade. A statistical method for 3D object detection applied to faces and cars. In Proc. of CVPR 2000, pages 746–751, 2000.

    Google Scholar 

  12. K. K. Sung and T. Poggio. Example-based learning for view-based human face detection. IEEE PAMI, 20(1):39–51, 1998.

    Google Scholar 

  13. R. Tarjan. Finding optimum branchings. Networks, 7:25–35, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  14. V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

    Google Scholar 

  15. J. Yang and A. Waibel. A real-time face tracker. In Proc. of WACV’96, pages 142–147, 1996.

    Google Scholar 

  16. K.C. Yow and R. Cipolla. Scale and orientation invariance in human face detection. In Proceedings 7th British Machine Vision Conference, pages 745–754, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, T.V., Worring, M., Smeulders, A.W.M. (2001). Face Detection by Aggregated Bayesian Network Classifiers. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics