Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

A new interpretation of the brain chaos is proposed in this paper. The fundamental ideas are grounded in approximation theory. We show how the chaotic brain activity can lead to the emergence of highly precise behavior. To provide a simple example we use the Sierpinski triangles and we introduce the Sierpinski brain. We analyze the learning processes of brains working with chaotic neural objects. We discuss the general implications of the presented work, with special emphasis on messages for AI research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andras, P.: RBF neural networks with orthogonal basis functions. To appear in: Howlett, R.J., Jain, L.C. (eds.): Recent Developments in Theory and Algorithms for Radial Basis Function Networks. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  2. Brockmann, D., Geisel, T.: The ecology of gaze shifts. Neurocomputing 32-33 (2000) 643–650

    Google Scholar 

  3. Devaney, R.L.: A First Course in Chaotic Dynamical Systems. Theory and Experiment. Addison-Wesley, Reading, MA (1992).

    Google Scholar 

  4. Edelman, G.M.: Neural Darwinism.Basic Books, New York, NY (1987)

    Google Scholar 

  5. Ellacott, S.W.: Aspects of numerical analysis of neural networks. Acta Numerica 3 (1994) 145–202

    Article  MathSciNet  Google Scholar 

  6. Erdi, P.: On the ‘Dynamic Brain’ metaphor. Brain and Mind 1 (2000) 119–145

    Article  Google Scholar 

  7. Freeman, W.J.: Role of chaotic dynamics in neural plasticity. In: Pelt, J. van,Corner, M.A., Uylings, H.B.M., Lopes da Silva, F.H. (eds.): Progress in Brain Research 102 (1994) 319–333

    Google Scholar 

  8. Fujii, H., Ito, H., Aihara, K., Ichinose, N., Tsukada, M.: Dynamical Cell Assembly Hypothesis Theoretical Possibility of Spatio-temporal Coding in the Cortex. Neural Networks 9 (1996) 1303–1350

    Article  MATH  Google Scholar 

  9. Glass, L.: Chaos in neural systems. In: Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, (1995) 186–189

    Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan Publishers, Englewood Cliffs, NJ, (1994)

    MATH  Google Scholar 

  11. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79 (1982) 2554–2558

    Article  MathSciNet  Google Scholar 

  12. Hooper, S.L.: Crustacean stomatogastric system. In: Arbib, M.A. (ed.): The Hand-book of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, (1995) 275–278

    Google Scholar 

  13. Kelso, J.A.S.: Dynamic Patterns: The Self-Organization of Brain and Behavior. Bradford Books, Cambridge, MA (1997)

    Google Scholar 

  14. Lieske, S.P., Thoby-Brisson, M., Telgkamp, P., Ramirez, J.M.: Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nature Neuroscience 3 (2000) 600–607

    Article  Google Scholar 

  15. Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Masson, G.S., Castet, E.: Motion perception during saccadic eye movements. Nature Neuroscience 3 (2000) 177–183

    Article  Google Scholar 

  17. Mpitsos, G.J., Burton, R.M., Creech, H.C., Soinilla, S.O.: Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns, Brain Research Bulletin 21 (1988) 529–538

    Article  Google Scholar 

  18. Nara, S., Davis, P.: Learning feature constraints in a chaotic neural memory. Physical Review E 55 (1997) 826–830

    Article  Google Scholar 

  19. Van Ooyen, A., Willshaw, D.J.: Development of nerve connections under the control of neurotrophic factors: parallels with consumer-resource systems in population biology. Journal of Theoretical Biology 206 (2000) 195–210

    Article  Google Scholar 

  20. Rabinovich, M.I., Abarbanel, H.D.I., Huerta, R., Elson, R., Selverston, Al.I.: Self-regularization of chaos in neural systems: Experimental and theoretical results. IEEE Transactions on Circuits and Systems-I.: Fundamental Theory and Applications 44 (1997) 997–1005

    Article  MathSciNet  Google Scholar 

  21. Rakic, P., Komuro, H.: The role of receptor-channel activity during neuronal cell migration. Journal of Neurobiology 26 (1995 ) 299–315

    Article  Google Scholar 

  22. Schiff, S.J.: Forecasting brain storms. Nature Medicine 4 (1998) 1117–1118

    Article  Google Scholar 

  23. Schölkpof, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods. Support Vector Learning. MIT Press, Cambridge, MA, (1999)

    Google Scholar 

  24. Shepherd, G.M.: The Synaptic Organization of the Brain. Oxford University Press, Oxford (1997)

    Google Scholar 

  25. Tsuda, I.: Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems. To appear in: Behavioral and Brain Sciences (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andr#x00E1s, P. (2001). The Role of Brain Chaos. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics