Skip to main content

The Dynamics of Learning and Memory: Lessons from Neuroscience

  • Chapter
  • First Online:
Emergent Neural Computational Architectures Based on Neuroscience

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

In the biological neural network, synaptic connections and their modification by Hebbian forms of associative learning have been shown in recent years to have quite complex dynamic characteristics. As yet, these dynamic forms of connection and learning have had little impact on the design of computational neural networks. It is clear however that for the processing of various forms of information, in which the temporal nature of the data is important, eg in temporal sequence learning and in contextual learning, such dynamic characteristics may play an important role. In this paper we review the neuroscientific evidence for the dynamic characteristics of learning and memory, and propose a novel computational associative learning rule which takes account of this evidence. We show that the application of this learning rule allows us to mimic in a computationally simple way certain characteristics of the biological learning process. In particular we show that the learning rule displays similar temporal asymmetry effects which result in either long term potentiation or depression in the biological synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerstner, W.: Spiking neurons. In: W. Maass and C.M. Bishop (eds):Pulsed Neural Networks. MIT Press, Cambridge (1998) 3–54.

    Google Scholar 

  2. Thompson, A.M., Deuchars, J.: Temporal and spatial properties of local circuits in neocortex. Trends in Neuroscience 17 (1994) 119–126.

    Article  Google Scholar 

  3. Markram, H., Tsodyks, M.: Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382 (1996) 807–810.

    Article  Google Scholar 

  4. Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B.: Synaptic depression and cortical gain control. Science 275 (1997) 220–224.

    Article  Google Scholar 

  5. Ali, A.B., Thompson, A.M.: Facilitating pyramid to horizontal oriens-hippocampus. Journal of Physiology (London) 507 (1998) 185–199.

    Article  Google Scholar 

  6. Reyes, A, Sakmann, B.: Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. Journal of Neuroscience 19 (1999) 3827–3835.

    Google Scholar 

  7. Tsodyks, M.V., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Science USA 94 (1997) 719–723.

    Article  Google Scholar 

  8. Grossberg, S.: Some physiological and biochemical consequences of psychological postulates. Proceedings of the National Academy of Science USA 60 (1968) 758–765.

    Article  MATH  Google Scholar 

  9. Grossberg, S.:On the production and release of chemical transmitters and related topics in cellular control. Journal of Theoretical Biology 22 (1969) 325–364.

    Google Scholar 

  10. Sen, K., Jorge-Rivera, J.C., Marder, E., Abbott, L.F.: Decoding synapses. Journal of Neuroscience 16 (1996) 6307–6318.

    Google Scholar 

  11. Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., Nelson, S.B.: A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17 (1997) 7926–7940.

    Google Scholar 

  12. Levy, W.B., Steward, O.: Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8 (1983) 791–797.

    Article  Google Scholar 

  13. Debanne, D., Shulz, D.E., Fregnac, Y.: Temporal constraints in associative synaptic plasticity in hippocampus and neocortex. Canadian Journal of Physiological Pharmacology 73 (1995) 1295–1311.

    Google Scholar 

  14. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275 (1997) 213–215.

    Article  Google Scholar 

  15. Debanne, D., Gahwiler, B.H. & Thompson, S.M.: Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal of Physiology (London) 507.1 (1998) 237–247.

    Article  Google Scholar 

  16. Guo-qiang Bi, Mu-ming Poo.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18 (1998) 10464–10472.

    Google Scholar 

  17. Magee, J.C. & Johnston, D.: A synaptically controlled associative signal for Hebbian plasticity in hippocampal neurons. Science 275 (1997) 209–212.

    Article  Google Scholar 

  18. Senn, W., Tsodyks, M., & Markram, H.: An algorithm for synaptic modification based on exact timing of pre-and post-synaptic action potentials. In: Lecture Notes in Computer Science, Vol. 1327. Springer-Verlag, Berlin Heidelberg New York (1997) 121–126.

    Google Scholar 

  19. Denham, M.J., McCabe, S.L.: A dynamic learning rule for synaptic potentiation. Research Report CNAS-98-01, School of Computing, University of Plymouth, (1998).

    Google Scholar 

  20. Kempter, R., Gerstner, W., & van Hemmen, J.L.: Spike-Based Compared to Rate-Based Hebbian Learning. In: Advances in Neural Information Processing Systems 11. MIT Press, Cambridge (1999).

    Google Scholar 

  21. Migliore, M, Hoffman, D.A., Magee, J.C., Johnston, D.: Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience 7 (1999) 5–15.

    Article  MATH  Google Scholar 

  22. Spruston, N., Schiller, Y., Stuart, G., Sakmann, B.: Science 268 (1995) 297

    Article  Google Scholar 

  23. Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367 (1994) 69–72.

    Article  Google Scholar 

  24. Jaffe, D.B., Johnston, D., Lasser-Ross, N., Lisman, J.E., Miyakawa, H., Ross, W.N.: The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357 (1992) 244–6.

    Article  Google Scholar 

  25. Regehr, W.G., Tank, D.W.: Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells Journal of Neuroscience 12 (1992) 4202–4223

    Google Scholar 

  26. Markram H, Helm PJ, Sakmann B.: Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. Journal of Physiology 485 (1995) 1–20.

    Google Scholar 

  27. Llinas, R., Steinberg, I.Z., Walton, K.: Pre-synaptic calcium currents in squid giant synapse. Biophysical Journal 33 (1981) 289–322.

    Article  Google Scholar 

  28. Westenbroek, R.E., Ahlijanian, M.K., Catterall, W.A.: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons.Nature 347 (1990) 281–4.

    Article  Google Scholar 

  29. Markram, H., Sakmann, B.: Calcium transients in apical dendrites evoked by single sub-threshold excitatory post-synaptic potentials via low voltage-activated calcium channels. Proceedings of the National Academy of Sciences USA 91 (1994) 5207–5211.

    Article  Google Scholar 

  30. Sayer, R.J., Schwindt, P.C., Crill, W.E.: High-and low-threshold calcium currents in neurons acutely isolated from rat somatosensory cortex. Neuroscience Letters 120 (1990) 175–178.

    Article  Google Scholar 

  31. Diesz, R.A., Fortin, G., Zieglgansberger, W.: Voltage dependence of excitatorypostsynaptic potentials of rat neocortical neurons. Journal of Neurophysiology 65 (1991) 371–382.

    Google Scholar 

  32. McCobb, D.P., Beam, K.G.: Action potential waveform voltage clamp commands reveal striking differences in calcium entry via low and high voltage-activated calcium channels. Neuron 7 (1991)119–127.

    Article  Google Scholar 

  33. Hoffman, D.A., Magee, J.C., Colbert, C.M., Johnston, D.: K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387 (1997) 869–875.

    Article  Google Scholar 

  34. Lisman, J.:A mechanism for the Hebb and anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Science USA 86 (1989) 9574–9578.

    Google Scholar 

  35. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relation to long-term potentiation. Trends in Neuroscience 16 (1993) 480–487.

    Article  Google Scholar 

  36. Lisman, J.: The CaM kinase II hypothesis for the storage of synaptic memory. Trends in Neuroscience, 17 (1994) 406–412.

    Article  Google Scholar 

  37. Malenka, R.C.: Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78 (1994) 535–538.

    Article  Google Scholar 

  38. MacGregor, R.J.: Neural and Brain Modeling. Academic Press, San Diego(1989).

    Google Scholar 

  39. Bolshakov, V.Y., Siegelbaum, S.A.: Hippocampal long-term depression: arachidonic acid as a potential retrograde messenger. Neuropharmacology 34 (1995) 1581–1587.

    Article  Google Scholar 

  40. Fitzsimonds, R.M., Mu-ming Poo.: Retrograde signaling in the development and modification of synapses. Physiological Reviews 78 (1998) 143–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denham, M.J. (2001). The Dynamics of Learning and Memory: Lessons from Neuroscience. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics