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Abstract

Biological networks are capable of gradual learning based on observing a large number of exemplars over time

as well as of rapidly memorizing specific events as a result of a single exposure. The focus of research in neural

networks has been on gradual learning, and the modeling of one-shot memorization has received relatively little

attention. Nevertheless, the development of biologically plausible computational models of rapid memorization is of

considerable value, since such models would enhance our understanding of the neural processes underlying episodic

memory formation. A few researchers have attempted the computational modeling of rapid (one-shot) learning within

a framework described variably asrecruitment learningandvicinal algorithms. Here it is shown that recruitment

learning and vicinal algorithms can be grounded in the biological phenomena of long-term potentiation and long-

term depression. Toward this end, a computational abstraction of LTP and LTD is presented, and an “algorithm”

for the recruitment ofbinding-detector(or coincidence-detector) cells is described and evaluated using biologically

realistic data.

1 Introduction

Biological neural networks are capable of slow gradual learning as well as rapid one-shot memorization. The former

involves an exposure to a large number of exemplars and leads to the acquisition of perceptual-motor skills, category

formation, language skills, and certain types of semantic knowledge. In contrast, one-shot memorization can result

from a single exposure to an example, and underlies, among other things, the acquisition of “episodic memories” of

everyday events, and memories of faces.

The primary focus of research in neural network models has been on slow gradual learning, and the modeling of

one-shot memorization has received relatively little attention. Nevertheless, the development of biologically plausible

computational models of rapid memorization is of considerable value, since such models would enhance our under-

standing of the neural processes underlying memory formation and retrieval, and could lead to the design of robust

episodic memory modules for autonomous agents, and perhaps, to the development of memory prosthesis for brain

injured humans.

A few researchers have attempted the computational modeling of rapid one-shot learning within a framework

described variably asrecruitment learning[10, 22, 8, 24, 11, 20] andvicinal algorithms[37]. In simple terms, recruit-

ment learning can be described as follows: Learning occurs within a network of randomly connected nodes. Recruited

nodes are those nodes in the network that have acquired a distinct “meaning” (or functionality) by virtue of theirstrong



Lokendra Shastri Episodic Memory Formation in the Hippocampal System 2

interconnections to other recruited nodes and/or other sensorimotor (i.e., input/output) nodes. Nodes that are not yet

recruited can be viewed as “free” nodes. Such nodes are connected via weak links to a large number of free, recruited,

and/or sensorimotor nodes. These free nodes form a primordial network from which suitably connected nodes may be

recruited for representing new items. For example, a novel concepty which can be expressed as a conjunct of existing

conceptsx1 andx2 can be memorized by (i) identifying free nodes that receive links from nodes representingx1 as

well as nodes representingx2 and (ii) “recruiting” one or more such free nodes by strengthening the weights of links

incident on such nodes fromx1 andx2 nodes.

Feldman [10] showed that conjunctive concepts can be recruited with a high probability if one makes suitable

assumptions about network connectivity. He presented a probabilistic analysis of recruitment learning based on the

degree of connectivity and the number of intermediate layers in random interconnection networks. Shastri [22] ex-

tended the notion of recruitment learning to relational concepts. He treated a concept as a collection of attribute-value

bindings and suggested a two-stage memorization process. In the first stage,binder nodes are recruited for each

attribute-value binding in a concept. In the second stage, thesebindernodes are joined together by the recruitment of

another conjunctive node. Diederich [8] showed how this form of structured recruitment learning can be used to learn

new concepts expressed as modifications of existing concepts. Valiant [37] proposed a formal “neuroidal model” and

described several algorithms for the recruitment learning of conjunctive and relational concepts. He also presented

a quantitative analysis of these algorithms using plausible assumptions about connectivity in the neocortex. Valiant

referred to these algorithms as “vicinal algorithms.”

While general arguments in support of the neural plausibility of recruitment learning and vicinal algorithms have

been presented in the past (see [10, 37]), a specific neural correlate of such learning has not been proposed. In this

paper it is shown that recruitment learning can be firmly grounded in the biological phenomena oflong-term potenti-

ation (LTP) andlong-term depression(LTD) that involve rapid, long-lasting, and highly specific changes in synaptic

strength. Toward this end, a computational abstraction of LTP and LTD is proposed, and an “algorithm” for the re-

cruitment of binding-detector (orcoincidence detector) cells is described and evaluated using biologically realistic data

about region sizes and cell connectivity. In the proposed grounding, the specification of a vicinal algorithm amounts to

choosing a suitable network architecture and a set of appropriate parameter values for the induction of LTP and LTD.

The rest of the paper is organized as follows: Section 2 briefly reviews the phenomena of LTP and LTD. Section 3

describes a computational abstraction of cells, synapses, LTP, and LTD. Section 4 describes how a transient pattern

of activity can lead to the recruitment of binding-detector cells as a result of LTP (and optionally, LTD) within quasi-

random network structures. Finally, section 6 presents some concluding remarks.

2 Long-term potentiation and depression

Long-term potentiation (LTP) refers to a long-term increase in synaptic strength1 resulting from the pairing of presy-

naptic activity with postsynaptic depolarization [5, 14] LTP was first observed in the rabbit hippocampal formation,

and has since been observed in synapses along many excitatory pathways in the mammalian brain. Recent evidence

strongly suggests that LTP plays a direct causal role in learning and memory formation (e.g., [33, 21].

The most extensively studied form of LTP involves the unusual receptor NMDA2 (N-methyl-D-aspartate) which is

1A synapse is the site of communication between two cells. Typically, a synapse is formed when an axonal (output) fiber emanating from a

“presynaptic” cell makes contact with the dendrites (input structure) of a “postsynaptic” cell.

A synapse can be excitatory or inhibitory. The arrival of activity at an excitatory synapse from its presynaptic cell leads to a depolarization of

the local membrane potential of its postsynaptic cell and makes the postsynaptic cell more prone to firing. In contrast, the arrival of activity at an

inhibitory synapse leads to a hyperpolarization of the local membrane potential of the postsynaptic cell and makes the postsynaptic cell less prone

to firing. The strength of an excitatory (or inhibitory) synapse determines the degree of depolarization (or hyperpolarization) that will result from a

given presynaptic activity. The greater the synaptic strength, the greater the depolarization (hyperpolarization).
2Not all forms of LTP are NMDA receptor-dependent. The LTP of synapses formed by mossy-fibers on CA3 pyramidal cells is a case in point
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activated by the excitatory neurotransmitter glutamate, but only if the postsynaptic membrane is sufficiently depolar-

ized. In the absence of adequate depolarization, NMDA receptor-gated channels remain blocked by magnesium ions

in spite of glutamate being bound to the receptor. Adequate depolarization of the postsynaptic membrane, however,

expels the magnesium ions and unblocks the channels. Once the channels are unblocked, calcium ions flood into the

dendritic spine of the postsynaptic cell and trigger a complex series of biochemical changes that result in the induction

of LTP.

The two conditions required for the activation of NMDA receptor, namely, presynaptic activity and strong postsy-

naptic depolarization, together entail that the LTP requires the concurrent arrival of activity at several synapses of the

postsynaptic cell. This is referred to as thecooperativityproperty of LTP.

Several properties of LTP make it suitable for serving as the basis for one-shot recruitment learning. First, it

is induced rapidly — within a few seconds, and is fully present within 20-30 seconds. Second it is long lasting.

Third, the cooperativity property of LTP makes it an ideal mechanism for transforming atransientexpression of a

relationship between two items or more (encoded as the coherent activity of the ensembles representing these items)

into a persistentexpression of this relationship (encoded via long-term changes in the efficacy of synapses linking

the ensembles representing these items). Finally, LTP is synapse specific, and hence, it can express highly specific

bindings and correlations.

LTP resulting from the arrival of coincident activity along afferent fibers belonging to a single pathway is referred

to ashomosynapticLTP. If the arrival of coincident activity along two independent pathways,A andB, leads to

the LTP of synapses formed by fibers ofA, but the arrival of activity along fibers ofA alone does not, then the

LTP of synapses formed by fibers ofA is referred to asassociativeLTP [12, 6]. We will, however, distinguish

between associative and homosynaptic LTP based on therepresentationaldistinctiveness of the afferent sources whose

cooperative activity leads to LTP. Thus we will use the qualifier “homosynaptic” to refer to LTP resulting from the

arrival of coincident activity along afferents fibers emanating from cells representing thesameitem, and we will use

the qualifier “associative” to refer to LTP resulting from the arrival of coincident activity along two sets of afferent

fibers, with each set emanating from cells representing a distinct item.

In addition to LTP, synapses along key excitatory pathways in the mammalian hippocampal formation have been

shown to undergo long-term depression (LTD) [3, 13]. A synapse receiving no presynaptic activity can undergo

heterosynapticLTD if other synapses of the same postsynaptic cell receive strong presynaptic activity. In other words,

the absence of presynaptic activity in the presence of strong postsynaptic activity can lead to heterosynaptic LTD of

a synapse. A synapse may undergoassociativeLTD upon receiving presynaptic activity that is out of phase with

strong rhythmic activity converging on other synapses of the postsynaptic cell [34]. Finally, prolonged low frequency

stimulation of a synapse can lead to its homosynaptic LTD [9].

3 A Computational Abstraction of LTP and LTD

The computational abstraction of LTP and LTD proposed here is an highly simplified idealization of the complex

biophysical processes underlying the induction and expression of LTP and LTD. This abstraction is guided by two

considerations. First, the abstraction should be rich enough to capture temporal aspects critical for modeling LTP

and LTD. Second, the abstraction should bediscreteand minimal so as to facilitate quantitative analyses and efficient

computer simulations of large-scale neuronal networks.

[18].
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3.1 Cells

A cell is modeled as an idealized integrate-and-fire neuron (e.g., see [16]), and the spatio-temporal integration of

activity arriving at a cell is modeled as follows:

Let ai(t) be a measure of presynaptic activity occurring at synapsesi of the cell at timet. In biophysical terms,

ai(t) may correspond to the number of spikes arriving atsi within a unit time interval anchored att. Thus the arrival of

a high-frequency spike-burst atsi would correspond to a high value ofai(t). Letwi(t) refer to the weight of synapse

si at timet.

The postsynaptic potential,pspi(t jai(t0)), resulting from the presynaptic activity atsi at timet0 is modeled as

a piecewise linear function consisting of a rising (ramp-up) segment, a flat (plateau) segment, and a falling (decay)

segment. That is:

pspi(t jai(t0)) =

8>>>>>>>>>><
>>>>>>>>>>:

mr � (t� t0) t0 � t < (t0 +�Tr)

mr ��Tr (t0 +�Tr) � t < (t0 +�Trs)

mr ��Tr + (t��Trs) �mf (t0 +�Trs) � t < (t0 + !int)

0 otherwise

(1)

wheremr is the slope of the rising segment and is given by(ai(t0) � wi(t0))=�Tr, �Tr is the duration of the rising

segment,�Ts is the duration of the flat segment,�Trs equals(�Tr +�Ts), mf is the slope of the falling segment,

and!int is the window of temporal integration denoting the maximum amount by which two incident activities may

lead/lag and still be summated by the postsynaptic cell. Note that

!int = �Trs + (mr ��Tr)=mf (2)

The postsynaptic potential at timet attributable tosi, pspi(t), can be obtained by summing the effect of all the

activity arriving atsi during the past!int time units. Thus

pspi(t) =
X

(0��<!int)

pspi(t jai(t� �)) (3)

andpot(t), the cell’s potential at timet resulting from the combined effect of presynaptic activity at all its synapses

equals:

pot(t) =
X
i

pspi(t) (4)

wherei ranges over all synapses of the cell.

A cell has a firing threshold,threshf (t), with a resting value of�f . A cell fires at timet if pot(t) � threshf (t), and

produces an action potential (spike). This spike arrives at synapses downstream from the cell at timet+ d, whered is

the propagation delay.

After a cell fires, it enters a refractory state for a duration!ref . During this interval, the cell does not fire irrespec-

tive of its inputs. That is,

threshf (t) =

(
+1 if cell has fired during the interval[t� !ref ; t� 1]

�f otherwise
(5)

Some cell-types can have two firing modes:supra-activeandnormal. These modes are associated with firing

thresholds�sf and�f , respectively, (�sf > �f ), and output levelsO2 andO1, respectively, (O2 > O1). Neurally, the
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supra-activemode corresponds to a high-frequency burst response such as the complex spike burst response generated

by hippocampal pyramidal cells, and thenormalmode corresponds to a simple spike response consisting of isolated

spikes. The proposed abstraction of the distinction between a complex spike burst response and a simple spike response

based on firing thresholds and output levels is a gross simplification. But for suitable choices of parameter values, this

simple abstraction offers a computationally inexpensive, yet functionally adequate, means of modeling the two distinct

response modes of certain cells.

3.2 Projection

A projectionrefers to the set of links emanating from cells in a source region and impinging on cells in a target region.

It is assumed that all the synapses formed by a projection are of the sametypeand have similar attributes.

3.3 Synapses

A synapse can be in any one of following three states:naive, potentiated, ordepressed. The state of a synapse signifies

its strength (weight). For a given synaptic type, the weights of all synapses in a given state lie within a restricted band.

The weight bands associated with different states are disjoint. The weight bands associated with a synaptic state may

differ from one synaptic type to another.

3.4 Computational modeling of LTP

The induction of LTP is governed by the following parameters: thepotentiation threshold�p, theweight increment

�wltp, therepetition factor�, and themaximum inter-activity interval�iai.

Consider a set of neighboring synapsess1; : : : ; sn sharing the same postsynaptic cell. Convergent presynaptic

activity at s1; : : : ; sn can lead to LTP of naivesi’s and increase their weights by�wltp if the following conditions

hold:

1.
P

1�i�n pspi(t) � �p

Note that in order to summate, the presynaptic activity arriving ats1; : : : ; sn must be “synchronous”, that is, the

maximum lead/lag in incident activity at any pair of synapses should be no more than!int.

2. Such synchronous presynaptic activity recurs (repeats) at least� times.

3. The interval between twosuccessivearrivals of presynaptic activity at a synapse during the above repetition is

at most�iai time units. In other words, successive volleys of synchronous activity should not be more than�iai

apart.

Note that associative and homosynaptic LTP are modeled in an analogous manner. The difference between ho-

mosynaptic and associative LTP is simply this: In the case of homosynaptic LTP, the activity leading to LTP emanates

from a cell ensemble representing a single item. In the case of associative LTP such activity emanates from multiple

cell ensembles representing more than one item.

3.5 Computational modeling of LTD

Heterosynaptic LTD is also modeled similarly using five parameters. These are: the potentiation threshold�p, the

weight decrement�wltd, the repetition factor�, the maximum inter-activity interval�iai, and thepropensity of LTD

� 0 � � � 0. When naive or potentiated synapses of a postsynaptic cell receive convergent presynaptic activity,

neighboring inactive naive synapses of the postsynaptic cell undergo heterosynaptic LTD and their weights decrease
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by �wltd. As in the case of LTP,�p dictates the minimum weighted sum of synchronous activity that neighboring

synapses of the postsynaptic cell must receive, and� specifies the number of times such presynaptic activity must recur

in order to induce heterosynaptic LTD of naive inactive synapses. Also as before,�iai specifies the maximum permis-

sible gap between the successive arrival of presynaptic activity. The parameter� specifies the fraction of inactive naive

synapse that undergo LTD when the above conditions are met. Thus� provides a simple computational mechanism

for controlling the prevalence of heterosynaptic LTD. A value of� = 0 means that there is no heterosynaptic LTD

and a value of� = 1 means that a single occurrence of LTP can lead to the heterosynaptic LTD of all inactive naive

synapses of the postsynaptic cell.

3.6 Modeling neuromodulation

The effect of neuromodulators on the response of a cell and on the induction of LTP at a synapse is a complex

phenomena. In the present proposal, these effects are modeled by positing an additional input (or bias) that modifies

the firing thresholds (�f and�sf ) of a cell and the potentiation threshold (�p) of a synapse.

3.7 Emergence of cells and circuits responsive to specific functionalities

LTP and LTD can transform random networks into structures consisting of cells tuned to specific functionalities.

Typically, a cell receives a large number of inputs (afferents), and hence, can potentially participate in a large number

of functional circuits. If, however, the weights of selected synapses on the cell increase via LTP (and, optionally, the

weights of other synapses decrease via LTD) the cell can become more selective and participate in a limited number of

functional circuits. Thus LTP and LTD provide a promising neural mechanism for the recruitment of structures with

specific functionalities within quasi-random networks.

Let us consider the simplest of all cases where a cellB (see Fig. 1) becomeslinkedto a cell ensembleA as a result

of LTP (cellB is linked to a cell ensembleA if the firing of a significant number of cells inA leads to the firing of

B). Under appropriate conditions, the firing of cells inA would lead to the homosynaptic LTP of synapses formed

by afferents fromA impinging onB and (optionally) to the heterosynaptic LTD of some of the inactive synapses

formed by the afferents from other cells impinging onB. The strengthening of synapses fromA toB would increase

the likelihood thatB fires whenever cells inA fire. This would result in cellB becoming linked to cell ensemble

A. Additionally, the weakening ofB’s synapses formed by cells not inA would lower the likelihood thatB fires in

circumstances when cells inA do not fire.

In the following section we illustrate how transient activity propagating through neural circuits can automatically

lead to the recruitment of binding-detector (coincidence detector) cells.

4 Recruitment of binding-detector cells

Our ability to remember events in our daily life demonstrates our capacity to rapidly acquire new memories. Typically,

such memories record who did what to whom where and when, or describe states of affairs wherein multiple entities

occur in particular configurations. This form of memory is often referred to as episodic memory [36], and there is a

broad consensus that the hippocampal formation and neighboring areas in the medial temporal lobes serve a critical

role in its formation [19, 32, 7, 35].

The persistent encoding of an event must be capable of encoding role-entitybindings. Consider the eventdescribed

by “John gave Mary a book in the library on Tuesday”. This event cannot be encoded by simply forming a conjunctive

association between “John”, “Mary”, “a book”, “Library”, “Tuesday” and “give” since such an encoding would be

indistinguishable from that of the event described by “Mary gave John a book in the library on Tuesday”. In order
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Figure 1: CellB becomes linked to ensembleA. The label A* attached to one of the afferents ofB indicates that (i)

the source of this afferent is a cell in ensembleA and (ii) this source cell is firing. Only a single afferent from ensemble

A toB is shown. In general,B may have to receive several afferents from cells inA in order to become linked toA.

to make the necessary distinctions, the encoding of an event should specify thebindingsbetween theentitiespartic-

ipating in the event and theroles they play in the event. For example, the encoding of the event in question should

specify the followingrole-entity bindings: (hgiver=John i, hrecipient=Mary i, hgive-object=a-Book i, htemporal-

location=Tuesday i, hlocation=Library i).

As explained in [27], it is possible to evoke a fleshed out representation of an event by “retrieving” the bindings

pertaining to the event and activating the web of semantic and procedural knowledge with these bindings. Thus cortical

circuits encoding generic “knowledge” about actions such asgiveand entities such aspersons, books, libraries, and

Tuesdaycan recreate the necessary gestalt and details about the event “John gave Mary a book on Tuesday in the

library” upon being activated with the above bindings. This view is supported by work on “reflexive reasoning”

[28, 25, 30] and “executing schemas” [4, 29].

In view of the above, the recruitment of binding-detectors is expected to be a critical step in the memorization of

episodic memory. The following describes how such binding-detector cells can arise spontaneously and rapidly within

a biologically motivated network structure as a result of LTP (and optionally, LTD).

4.1 A structure for the encoding of binding-detector cells

A structure for the rapid formation of cells responsive to binding matches consists of three regions:ROLE, ENTITY,

andBIND (see Fig. 2(a)). RegionsROLE andENTITY are assumed to have 750,000 primary (excitatory) cells each,

while regionBIND is assumed to have 15 million cells. RegionsROLE andENTITY have dense projections to region

BIND, with each cell inROLE andENTITY regions making 17,000 connections with cells in regionBIND. In other
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Figure 2: (a) A structure for the formation of binding-detector cells. Arcs indicate projections and the number on

an arc indicates the projective field size. These projections are assumed to be uniformly distributed over theBIND

region. Each role and entity is encoded by a small ensemble of cells in theROLE andENTITY regions, respectively.

Cells in role and entity ensembles are also assumed to be distributed uniformly within regionsROLE and ENTITY,

respectively. Binding-detector cells are recruited in regionBIND. It is assumed that theROLE andENTITY regions

lie in the entorhinal cortex and the regionBIND corresponds to the dentate gyrus (a part of the hippocampus). The

projective field and region sizes are based on [2, 40]. (b) A schematic depiction of the ensembles of rolesr1 andr2
and entitiesf1 andf2. Only links from cells inr1 andf1 ensembles to cells inBIND are shown. Cells marked with an

“X” are candidates for recruitment asbindercells for the bindinghr1 = f1i.
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words, the projective field (PF) size3 of the ROLE to BIND projection as well as theENTITY to BIND projection is

17,000. It is assumed that these projections are uniformly distributed overBIND.

Each role and entity is encoded by a small ensemble of cells in theROLE andENTITY regions, respectively. Cells in

role and entity ensembles are also assumed to be distributed uniformly within regionsROLE andENTITY, respectively.

Note that a cell inROLE may belong to multiple role ensembles, and a cell inENTITY may belong to multiple entity

ensembles.

4.2 A neural correlate of the structure for encoding binding-detectors

There is a direct correspondence between the model structure described above and the interaction between the entorhi-

nal cortex (EC) which is a region in the medial temporal lobe, and the dentate gyrus (DG) which is a component of

the hippocampal formation. TheROLE andENTITY regions correspond to subregions of the EC and theBIND region

corresponds to the DG. The projections from high-level cortical areas toROLE andENTITY regions correspond to the

well known cortical projections to EC [38]. The dense projections fromROLE andENTITY to BIND correspond to the

dense projections from EC to DG [2]. Moreover, the projective field and region sizes shown in Fig. 2(a) are based on

anatomical findings presented in [2, 40] (see [27] for a detailed discussion).

4.3 The transient representation of role-entity bindings

It is assumed that the bindings constituting an event are expressed as a transient pattern of rhythmic activity over

distributed high-level cortical circuits (HLCCs) [39, 1, 28, 31]. These HLCCs project to cells inENTITY andROLE

regions and, in turn, induce transient patterns of rhythmic activity within these regions. Fig. 3 is an idealized depiction

of the transient activity induced inENTITY andROLE regions by HLCCs to convey the relational instanceRI : (hr1 =

f1i; hr2 = f2i). Herer1 andr2 are roles, andf1 andf2 are entities bound tor1 andr2, respectively. Each spike in

the illustration signifies the synchronous firing of a cell ensemble. It is shown that cells in ther1 andf1 ensembles

are firing in synchrony, and so are cells in ther2 andf2 ensembles. The firing of cells in ther1 andf1 ensembles,

however, is desynchronized with the firing of cells in ther2 andf2 ensembles. This desynchronization is assumed to

be� !int time units. Note that the dynamic encoding ofRI can be viewed as a periodic pattern consisting of two

phases: �1 and�2. Here�1 and�2 are mere labels and the ordering of phases has no significance.

In effect, a role-entity binding is expressed by the synchronous firing of the cell ensembles associated with the

bound role and entity [1, 28]. In general, the transient encoding of a relational instance withn distinct entities partic-

ipating as role-fillers involvesn interleaved quasi-periodic activities having a period�. It is assumed that� � �iai

time units. Such a spatio-temporal encoding enables multiple role-entity bindings to be expressed and propagated

concurrently without cross-talk [28].

The following section explains how such a transient encoding of a relational instance may be transformed rapidly

into persistent circuits for detecting bindings.

4.4 Recruitment of binder cells for memorizing role-entity bindings

BIND contains two kinds of cells: principal cells (these correspond to granule cells in the dentate gyrus) and Type-1

inhibitory interneurons.4 Each principal cell receives afferents from a number of cells inROLE andENTITY regions and

makes synaptic contacts on a number of interneurons. The interneurons in turn make contacts on a number of principal

3The set of cells in the target region that receive links from a cellc in the source region is referred to as the projective field (PF) ofc. The PF

sizeof c refers to the number of synapses formed byc with cells in the target region.
4The synapses formed by inhibitory interneurons on other cells have negative weights.
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Figure 3: The transient encoding of a relational instanceRI given by the bindings:(hr1 = f1i; hr2 = f2i). Here

r1 andr2 are roles, andf1 andf2 are entities bound tor1 andr2, respectively, inRI . Each spike in the illustration

signifies the synchronous firing of a cell ensemble. Cells in ther1 andf1 ensembles fire in synchrony and so do cells

in ther2 andf2 ensembles. The firing of cells in ther1 andf1 ensembles, however, is desynchronized with the firing

of cells in ther2 andf2 ensembles. This desynchronization is assumed to be� !int time units. Moreover, the period

of firing, �, is assumed to be� �iai time units. The dynamic encoding ofRI can be viewed as a periodic pattern

consisting of twophases: �1 and�2 (theorder in which these phases appear has no significance).

cells, thereby forming inhibitory circuits withinBIND (see Fig. 4). The significance of inhibitory interneurons will be

explained later.

The potentiation threshold,�p, of principal cells is sufficiently high, and hence, LTP of a synapse occurs only if

multiple synapses of a postsynaptic cell receive coincident presynaptic activity.5 Moreover, the response threshold,

�f , of principal cells is such that a cell does not fire unless it receives impulses at multiple potentiated synapses. A set

of values for�p, �f , synaptic weights, and other parameters of LTP and LTD are given below.6:

�f = 1700; �p = 890;

naive weight band = 100-110;

�ltp = 100; �ltd = 50;

�ltp = 1; �ltd = 0;

� = 4; !int = 5; !ref = 2.

The choice of�iai is governed by!int and the number of role-entity bindings in an event. Thus any�iai � !int � n,

wheren is the number of bindings in the event, is appropriate.

The transient encoding of the relational instanceRI shown in Fig. 3 leads to the following events inBIND (refer to

Fig. 4). The synchronous firing of cells in ther1 andf1 ensembles (henceforth,r1 andf1 cells) leads to the associative

LTP of active synapses of principal cells receiving sufficient afferents fromr1 andf1 cells. At the same time, depend-

ing on the value of�ltd, some of the inactive naive synapses of these principal cells may undergo heterogeneous LTD.

The LTP of synapses formed by afferents arriving fromr1 andf1 cells makes these principal cells behave as binding

5Here and elsewhere in the paper, “coincidence” is defined with reference to!int, the window of temporal integration. See Section 3.
6LTD does not play a critical role in the recruitment of binding-detector cells described here. It might, however, play an important role in the

recruitment of other functional circuits.
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Figure 4: TheBIND region consists of principal cells and inhibitory interneurons (Type-1). In the illustration, G1—G3

are principal cells andinh is a Type-1 interneuron. Afferents (incoming links) labeledr1* and f1* are from cells in

the ensembles for roler1 and entityf1, respectively. Since G1 and G2 receive synchronous activity along afferents

from r1 andf1 cells, they arecandidatesfor becoming binding-detector cells for the bindinghr1 = f1i. It is assumed

that the inhibition frominh prevents the LTP of G1’s synapses, and only G2 becomes a binding-detector cell for

hr1 = f1i. Filled blobs denote inhibitory synapses, and the size of a filled blob is meant to convey the strength of the

(inhibitory) synapse. See text for additional details.
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detector cells for the bindinghr1 = f1i and we will refer to such cells asbinder(hr1 = f1i) cells.7

The claim thatbinder(hr1 = f1i) cells behave as binding-detector cells forhr1 = f1i is substantiated quantita-

tively in Section 5, but let us examine why these cells behave in the desired manner. Note that abinder(hr1 = f1i)

cell will fire in response to the synchronous firing ofr1 andf1 cells since the connectivity betweenr1 andf1 cells

and a principal cell required for the latter’s recruitment as abindercell during the memorization ofhr1 = f1i also

suffices for the latter’s firing during the retrieval ofhr1 = f1i. At the same time, since�f is quite high (1700), a

binder(hr1 = f1i) cell is unlikely to fire as a result of stray impulses arriving at its synapses.

Similar LTP and LTD events occur at the synapses of principal cells that receive coincident activity along afferents

fromr2 cells inROLE andf2 cells inENTITY, and lead to their recruitment asbinder(hr2 = f2i) cells. Abinder(hr2 =

f2i) cell fires wheneverr2 cells inROLE andf2 cells in ENTITY fire in synchrony and behaves as a binding detector

cell for the role-entity bindinghr2 = f2i.

4.5 Encoding and Response Times

The time required for the recruitment ofbinder cells is given by� � �iai. If we assume that the rhythmic activity

encoding dynamic bindings corresponds to
 band activity (ca. 40 Hz) we get�iai ' 25 msec. Assuming a plausible

value of� to be4 suggests thatbindercells can be recruited in about 100 msec. The time required forbindercells

to respond to a retrieval cue is at most�iai. Thus both the recruitment and response times of the proposed model are

consistent with the requirements of rapid (one-shot) memorization and recognition.

4.6 Potential problems in the formation of binder cells

The process by whichbindercells are formed is susceptible to several problems. First, in order to formbinder(hri =

fji) cells there should exist cells that receive afferents from bothri andfj cells. Given the random connectivity

between the regionsROLE andENTITY andBIND this cannot beguaranteed. Second, there may exist cells that receive

sufficient activity (� �p) along afferents fromri cells alone. Upon recruitment, such anill-formedcell would produce

false-positive responses since it will fire in response to the firing ofri cells alone, even if there is no coincident activity

of fj cells. Similarly, cells receiving sufficient links fromfj cells alone could also be recruited as ill-formedbinder

cells. Third, the same cell may get recruited as abindercell for multiple bindings. Consider a cell that gets recruited as

a bindercell for two bindingshri = fki andhrj = fli. This cell will fire in response to subsequent inputs containing

either of these two bindings as well as the bindings:hri = fli, andhrj = fki. Consequently, other cells connected

downstream to this cell could receive false-positive binding-match signals in certain circumstances.

Using biologically motivated values of various system parameters it is shown in Section 5 that the probability of not

finding cells for recruitment asbindercells is vanishingly small. The problem of too many cells becoming recruited for

a binding turns out not to be very serious in the case under consideration, and hence, is not discussed here. In general,

however, this problem can be alleviated by inhibitory feedback and feedforward local circuits formed by principal cells

and Type-1 inhibitory interneurons. These inhibitory circuits act as soft-WTA and only allow synapses of a limited

number of cells to undergo LTP (cf. [15, 17]). Furthermore, it is shown that the ensemble response of binder cells is

highly robust, in spite of the possibility that ill-formed and overlappingbindercells can be recruited.

7To be precise, a cell is deemed to be recruited as abinder(hr1 = f1i) cell if during the memorization ofhr1 = f1i, the cell’s synapses

undergo LTPand the cell fires. The firing of the cell at the time of its recruitment is crucial if the cell is to become part of functional circuits lying

downstream from the cell.
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5 Quantitative Results

The following quantities have been calculated analytically8 using the region and projective field sizes described in

Section 4.1, the cell, synapse, and LTP parameters described in Section 4.4, and by assuming that each role and entity

ensemble contains 600 cells.

1. Pfail, the probability that for a given bindingno cells will be found inBIND (DG) for recruitment as binding

detector cells is less than< 10�18. The probability that the system would be unable to encode a binding is

essentially zero.

2. The expected number of cells inBIND (DG) that will receive appropriate connections and will be candidates

for recruitment for a binding is 195. Thus a fairly large number of cells are recruited asbindercells for each

binding.

3. The expected number ofbinder(hr1 = f1i) cells that will fire in response to various retrievalcuesare shown

in Fig. 5. Note thatbinder(hr1 = f1i) cells

� respond robustly to the matching bindinghr1 = f1i

� produce an extremely weak response to erroneous, but partially related bindings of the formhr1 = fxi

andhrx = f1i (wherefx is any entity other thanf1, andrx is any role other thanr1)

� produce essentially no response to unrelated bindings.

Note that this performance holds irrespective of the number of bindings memorized inBIND.

Since each binding is redundantly encoded by multiple cells, and since these cells are physically dispersed in the

BIND region, the probability that a cell loss will destroy manybindercells for any given binding remains extremely

small. In particular, a loss ofx% of the cells in regionBIND will lead to an expected loss of onlyx% of the 195binder

cells for a given binding. Thus the memorization of binding-detectors is robust with respect to cell loss (e.g., a cell

loss of 10% will leave about 175bindercells of any given binding intact).

The results in Fig. 5 are based on�ltd = 0 (i.e., no LTD). This condition results in a maximal sharing ofbindercells

among different bindings, and hence, these results provide a measure of the system’s performance under conditions of

maximal cross-talk. A non-zero value of�ltd would reduce cross-talk, but it would also lead to a gradual reduction in

the number of cells available for recruitment as more and more bindings are memorized.

6 Conclusion

A grounding of recruitment learning and vicinal algorithms in the biological phenomena of LTP and LTD has been

described. A realization and specification of a vicinal algorithm using LTP has been illustrated by showing howbinder

cells responsive to specific role-entity bindings can be memorized rapidly in response to a transient pattern of activity

encoding the bindings. Using biologically plausible values for the number of cells in theROLE, ENTITY andBIND

regions, and the density of projections from theROLE andENTITY regions toBIND, it has been shown that the existence

of suitablebindercells for encoding arbitrary role-entity bindings is practically certain. It has also been shown that the

interference betweenbindercells for different bindings remains extremely low, and that the encoding ofbindercells

is robust with respect to cell loss.

The encoding of binding detectors is just one step in the acquisition of episodic memory. As argued in [23, 27]

a proper encoding of episodic memory also requires the recruitment ofbinding-error detectorcircuits,binding-error

8The bases of these calculation are discussed in [26].
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Figure 5: Response ofbinder(hr1 = f1i) cells to bindings in a retrieval cue. Herefx refers to an entity other than

f1 andrx refers to a role other thanr1.

integratorcells,relational instance match indicatorcircuits, andbinding-reinstatorcells. Shastri [24, 27] has proposed

a model of episodic memory formation that suggests how cells and circuits realizing these functional units can be

recruited rapidly via LTP and LTD within quasi-random networks whose architecture and circuitry resembles that of

the hippocampal formation. The resulting memory trace can differentiate between highly similar events and respond

to partial cues.

Several of the functional units required for encoding an episodic memory trace are more complex than thebinder

cells discussed in this article [24]. The recruitment of these units requires the full-range of features included in the

abstraction of LTP and LTD (e.g., spike versus burst firing modes) and further illustrates how interesting vicinal

algorithms can arise from a suitable choice of network architecture and parameters for the induction of LTP and LTD.

The investigation of biologically grounded recruitment learning algorithms can increase our understanding of the

neural processes underlying memory formation and retrieval. In the long-term, this research may also lead to the

design of robust memory modules for autonomous agents, and perhaps, eventually, to the development of memory

prosthesis for brain injured humans.
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