
A Compositional Model for 
Confluent Dynamic Data-Flow Networks 

Frank S. de Boer1 and Marcello IVI. Bonsangue2 

1 Utrecht University, The Netherlands 
frankb©cs.uu.nl 

2 CWI, Amsterdam, The Netherlands 
Marcello.Bonsangue©cwi.nl 

Abstract. We introduce a state-based language for programming dyna­
mically changing networks which consist of processes that communicate 
asynchronously. For this language we introduce an operational semantics 
and a notion of observable which includes both partial correctness and 
absence of deadlock. Our main result is a compositional characterization 
of this notion of observable for a confluent sub-language. 

1 Introduction 

The goal of this paper is to develop a compositional semantics of a confluent 
subset of the language MaC (Mobile asynchronous Channels). MaC is an impe­
rative programming language for describing the behavior of dynamic networks 
of asynchronously communicating processes. 

A program in MaC consists of a (finite) number of generic process descrip­
tions. Processes can be created dynamically and have an independent activity 
that proceeds in parallel with all the other processes in the system. They pos­
sess some internal data, which they store in variables. The value of a variable 
is either an element of a predefined data type or it is a reference to a channel. 
The variables of one process are not accessible to other processes. The processes 
can interact only by sending and receiving messages asynchronously via channels 
which are (unbounded) FIFO buffers. A message contains exactly one value; this 
can be a value of some given data type, like integer or a boolean, or it can be 
a reference to a channel. Channels are created dynamically. In fact, the crea­
tion of a process consists of the creation of a channel which connects it with its 
creator. This channel has a unique identity which is initially known only to the 
created process and its creator. As with any channel, the identity of this initial 
channel too can be communicated to other processes via other channels. Thus 
we see that a system described by a program in the language MaC consists of 
a dynamically evolving network of processes, which arc all executing in parallel, 
and which communicate asynchronously via mobile channels. In particular, this 
means that the communication structure of the processes, i.e. which processes 
are connected by which channels, is completely dynamic, without any regular 
structure imposed on it a priori. 

M. Nielsen and B. Rovan (Eds.): MFCS 2000, LNCS 1893, pp. 212--221, 2000. 
© Springer-Verlag Berlin Heidelberg 2000 



A Compositional Model for Confluent Dynamic Data-Flow Networks 213 

For MaC we first introduce a simple operational semantics and the following 
notion of observable. Let E denote the set of (global) states. A global state 
specifies, for each existing process, the values of its variables, and, for each 
existing channel, the contents of its buffer. The semantics 0 assigns to each 
program pin MaC a partial function in E --' P(E) such that O(p)(a) collects 
all final results of successfully terminating computations in a, if p does not have 
a deadlocking computation starting from a. Otherwise, O(p)(a) is undefined. 

This notion of observable 0 provides a semantic basis for the following in­
terpretation of a correctness formula {if; }p{ 7/J} in Hoare logic: every execution of 
program p in a state which satisfies the assertion if; does not deadlock and upon 
termination the assertion 7/J will hold. An axiomatization of this interpretation 
of correctness formulas thus requires a method for proving absence of deadlock. 

In this paper we identify a confluent sub-language of MaC which allows to 
abstract from the order between the communications of different processes and 
the order between the communications on different channels within a process [14, 
15]. A necessary condition for obtaining a confluent sub-language is the restric­
tion to local non-determinism and to channels which are uni-directional and 
one-to-one. In a dynamic network of processes the restriction to such channels 
implies that at any moment during the execution of a program for each existing 
channel there are at most two processes whose internal data contain a reference 
to it; one of these processes only may use this reference for sending values and 
the other may use this reference only for receiving values. 

For confluent MaC programs we develop a compositional characterization of 
the semantics 0. It is based on the local semantics of each single process, which 
includes information about the channels it has created and, for each known 
channel, information about the sequence of values the process has sent or read. 
Information about the deadlock behavior of a process is given in terms of a 
singleton ready set including a channel reference. As such we do not have any 
information about the order between the communications of a process on diffe­
rent channels and the order between the communications of different processes. 
In general, this abstraction will in practice simplify reasoning about the correc­
tness of distributed systems. 

Comparison with related work: The language MaC is a sub-language of the one 
introduced in [3]. The latter is an abstract core for the Manifold coordination 
language [4]. The main feature relevant in this context is anonymous communica­
tion, in contrast with parallel object-oriented languages and actor languages, as 
studied, for example, in [5] and [1], where communication between the processes, 
i.e., objects or actors, is established via their identities. 

In contrast to the ?T-calculus [16] which constitutes a process algebra for mo­
bility, our language MaC provides a state-based model for mobility. As such our 
language provides a framework for the study of the semantic basis of assertio­
nal proof methods for mobility. MaC can also be seen as a dynamic version of 
asynchronous CSP [14]. In fact, the language MaC is similar to the verification 
modeling language Promela [12], a tool for analyzing the logical consistency of 
distributed systems, specifically of data communication protocols. However, the 



214 F.S. de Boer and M.l\'1. Bonsangue 

semantic investigations of Promela are performed within the context of temporal 
logic, whereas M aC provides a semantic basis for Hoare logics. 

Our main result can also be viewed as a generalization of the compositional 
semantics of Kahn (data-flow) networks [13] (where the number of processes and 
the communication structure is fixed). Instead of a function the communication 
behavior of a process in the language M aC is specified in terms of a relation bet­
ween the sequence of values it inputs and the sequence of values it outputs. This 
information suffices because of the restriction to confluent programs. Confluence 
has been studied also in the context of concurrent constraint programming [9] 
where mobility is modeled in terms of logical variables. 

Generalization of Kahn (data-flow) networks for describing dynamically re­
configurable or mobile networks have also been studied in [6] and [11] using the 
model of stream functions. In this paper we study a different notion of obser­
vable which includes partial correctness and absence of deadlock. Furthermore, 
our language includes both dynamic process and channel creation. On the other 
hand, we restrict to confluent dynamic networks. 

2 Syntax and Operational Semantics 

A program in the language MaC is a (finite) collection of generic process descrip­
tions. Such a generic process description consists of an association of a unique 
name P, the so-called process type, with a statement describing generically the 
behavior of its instances. 

The statement associated with a process type P is executed by a process, i.e. 
an instance of that process type. Such a process acts upon some internal data 
that are stored in variables. The variables of a process are private, i.e., the data 
stored in the variables of a process is not accessible by another process, even if 
both processes are of the same type. We denote by Var, with its typical elements 
x, y, .. ., the set of variables. The value of a variable can be either an element of 
a predefined data type, like integer or boolean, or a reference to a channel. 

We have the following repertoire of basic actions of a process: 

x: = e x: = new(P) x!y x?y 

The execution of an assignment x: = e by a process consists of assigning the value 
resulting from evaluation of the expression e to the variable x (we abstract here 
from the internal structure of e and assume that its evaluation is deterministic 
and always terminates). 

The execution of the statement x: = new(P) by a process consists of the 
creation of a new process of type P and a new channel which, initially, forms a 
link between the two (creator and created) processes. A reference to this channel 
will be stored in the variable x of the creator and to a distinguished variable chn 
of the created process. The newly created process starts executing the statement 
associated with P in parallel with all the other existing processes. 

Processes can interact only by sending and receiving messages via channels. 
A message contains exactly one value; this can be of any type, including channel 



A Compositional Model for Confluent Dynamic Data-Flow Networks 215 

references. We restrict in this paper to asynchronous channels that are imple­
mented by (unbounded) FIFO buffers. The execution of the output action x!y 
sends the value stored in the variable y to the channel referred to by the varia­
ble x. The execution of the input action x?y suspends until a value is available 
through the specified channel. The value read is removed from the channel and 
then stored in the variable y. 

The set of statements, with typical element S, is generated by composing the 
above basic actions using well-known sequential non-deterministic programming 
constructs [8]. A program p is a finite collection of generic process descriptions 
of the form P <= S. The execution of a program {Po <= 80 , ••. , Pn <=Sn} starts 
with the execution of a root-process of type P0 . 

Next we define formally the (operational) semantics of the programming 
language by means of a transition system. We assume given an infinite set C 
of channel identities, with typical elements c, c', .... The set Val, with typical 
elements u, v, .. . , includes the set C of channel identities and the value l. which 
indicates that a variable is 'uninitialized'. 

A global state a of a network of processes specifies the existing channels, 
that is, the channels that have already been created, and the contents of their 
buffers. Formally, a is a partial function in C __,, Val* (here Val* denotes the 
set of finite sequences of elements in Val). Its domain dom(a) ~ C is a finite 
set of channel identities, representing those channels which have been created. 
Moreover, for every existing channel c E dom(a), the contents of its buffer is 
specified by a( c) E Val*. On the other hand, the internal state s E Var -+ Val 
of a process simply specifies the values of its variables. 

The behavior of a network of processes is described in terms of a transition 
relation between configurations of the form (X, a), where a is the global state 
of the existing channels and X is a finite multiset of pairs of the form (S, s), 
for some internal state s and statement S. A pair of the form (S, s) denotes an 
active process within the network: its current internal state is given by s and S 
denotes the statement to be executed. We have the following transitions for the 
basic actions (we assume given a program p). Below the operation of multiset 
union is denoted by l±J and by nil we denote the empty statement. 
Assignment: (X l±J {(x: = e,s)},a)-+ (X l±J {(nil,s[s(e)/x])},a), where s(e) 
denotes the value of e in s and s [ v / x] denotes the function mapping x to v and 
otherwise acting as s. 

Creation: (X l±J { (x: = new(P), s )}, a) -+ (X l±J {(nil, s[ c/x]), (S, s0 [ c/ chn]) }, a'), 
where P <= S occurs in p and a' = a[e/c] for some c E C \ dom(a). Thus a' 
extends a by mapping the new channel c to the empty sequence €. Moreover, 
the initial state of the newly created process s0 satisfies the following: s0 (x) = l., 
for every variable x E Var. Note that the new channel c forms a link between 
the two processes. The statement S is the one associated with the process type 
P in the program p. 

Input: Let s(x) = c(:f l.). (Xl±l{(x?y,s)},a)-+ (Xi±J{(nil,s[u/y])},a'), where 
a(c) = w · u for some u E Val, and a'results from a by removing u from the 
buffer of c, that is, a'= a[w/c]. 



216 F.S. de Boer and M.M. Bonsangue 

Output: Let s(x) = c(:r!: 1-) in (X ltJ {(x!y,s)},O") ~ (X ltJ {(nil,s)},a'), where 
a' results from O" by adding the value s(y) to the sequence CT(c), that is, 0'1 = 
CT[s(y) ·CT(c)/c]. 

The remaining transition rules for compound statements are standard and 
therefore omitted. By -+ * we denote the reflexive transitive closure of -+ and 
(X, a) =? 8 indicates the existence of a deadlocking computation starting from 
(X,a), that is, (X,CT) -+* (X',CT') with X' containing at least one pair (S,s) 
such that S :r!: nil, and from the configuration (X', 0"1) no further transition 
is possible. Moreover, (X, a) =? (X', a') indicates a successfully terminating 
computation with final configuration (X',CT'), that is, (X,O") -+* (X',O"') and 
X' contains only pairs of the form (nil, s ). 

We are now in a position to introduce the following notion of observable. 

Definition 1. Let p = {Po ~ So, ... , Pn {:::: Sn} be a program. By (Xo, CTo) 
we denote its initial configuration ({(So,so)},ao), where so(x) = 1-, for every 
variable x, and dom(ao) = 0. We define 

O( ) _ { 8 if (Xo, O"o) =? 8 
p - { (X, a) I (Xo, ao) :::;. (X, a)} otherwise 

Note that thus O(p) = 8 indicates that p has a deadlocking computation. On 
the other hand, if p does not have a deadlocking computation then O(p) collects 
all the final configurations of successfully terminating computations. 

3 Compositionality 

[n this section we introduce, for a certain kind of programs, a compositional 
~haracterization of the notion of observable defined in the previous section. 

First of all we restrict to local non-determinism. Moreover, we assume now a 
typing of the variables: we have variables of some predefined data types and we 
assume channel variables to be either of type i, for input, and o, for output. Let 
C, with typical element c, be a copy of C. A channel variable of type i always 
refers to an element of C, whereas, a channel variable of type o always refers 
to an element of C. (The set of all possible values thus includes both C and 
C.) We restrict to programs which are well-typed. In particular, in an output 
x!y the variable x is of type o and in an input x?y the variable x is of type 
l. An input x?y now also suspends if the value to be read is not of the same 
type as the variable y. Moreover, we assume that the distinguished variable chn 
(used for storing the initial link with the creator) is of type o. Consequently, 
in x: = new(P) the variable x has to be of type l. In other words, initially, the 
flow of information along the newly created channel goes from the created to the 
creator process. 

Finally, we assume that an output x!y, where y is a channel variable, is 
immediately followed by an assignment which uninitializes the variable y, i.e. 
it sets y to 1-. But for this latter, we do not allow channel variables (either of 
type l or o) to appear in an assignment. As a result, channels are one-to-one 
and uni-directional. 



A Compositional Model for Confluent Dynamic Data-Flow Networks 217 

We extend now the notion of an internal state s to include the following 
information about the channels. Let 'Y rf. Val and Val,, = Val U { 'Y }. For each 
channel c E C, s( c) E Val~ denotes, among others, the sequence of values 
received from channel c, and s(c) E Val~, denotes, among others, the sequence 
of values sent along channel c. More precisely, in a sequence w1 · 'Y · w2 · 1 · · ·, 
the symbol 1 indicates that first the sequence of values w1 has been sent along 
c (or received from c) and that after control over this channel has been released 
and subsequently regained again the sequence w2 has been sent (or received), 
etc .. Note that a process releases control over a channel only when it outputs 
that channel and that it subsequently may again regain control over it only by 
receiving it via some input. 

Additionally, we introduce a component s(v) E (CU {-l}) x P( C).The first 
element of s(v) indicates the channel which initially links the process with its 
creator (in case of the root-process we have here J_). The second element of s ( v) 
indicates the set of channels which have been created by the process itself. 

Given this extended notion of an internal state of a process we now present 
the transitions describing the execution of the basic actions with respect to 
the internal state of a process (we omit the standard transition for a simple 
assignment). 

Creation: Let s(v) = (u, V) and c rf. V in (x: = new(P), s) -+ (nil, s'[c/x]). 
Here s' results from s by adding c, that is, s'(v) = ( u, Vu { c} ). The only effect at 
the local level of the execution of a basic action x: = new(P) is the assignment 
to x of a channel c which is new with respect to the set of channels already 
created by the process. 
Output 1: If s(x) = c and y is not a channel variable, i.e. y is of some given 
data type like the integers or booleans, then (x!y, s) -+ (nil, s[s(c) · s(y)/c]). The 
local effect of an output (of a value of some predefined data type) consists of 
adding the value stored in the variable y to the sequence of values already sent. 
Output 2: If s(x) = c then (x!y, s) -+ (nil, s[s(c) · v/c][s(v) · 1/v]), where 
v = s(y) and y is a channel variable. So after the output along the channel c of 
the value v stored in the variable y, first the value vis appended to s(c), which 
basically records the sequence of values sent along the channel c. Finally, the 
output of channel v (and consequently its release) is recorded as such by 1 in 
the sequence s(v) which records the sequence of values sent along the channel 
v, in case v E C, and received from it, in case v E C. Note that we have to 
perform the state-changes indicated by [s(c) · v/c] and [s( v) · 1/v] in this order 
to describe correctly the case that v = c. 
Input: If s(x) = c(i= .l) then (x?y, s)-+ (nil, s[v/y, s(c) · v/c]), where v E Val 
is an arbitrary value (of the same type as y). This value is assigned to y and 
appended to the sequence s(c) of values received so far (along channel c).Note 
that because channels are one-to-one and unidirectional it cannot be the case 
that v =c. 

On the basis of the above transition system (we omit the rules from compo­
und statement since they are standard) we define the operational semantics of 
statements as follows. 



218 F.S. de Boer and M.M. Bonsangue 

Definition 2. An (extended) initial states satisfies the following: for some u E 
CU {j_} we have that s(chn) = u, and s(x) = J_, for every other variable, 
moreover, s(d) = s(d) =€.,for every channel d, and, finally, s(v) = (u,0). We 
define O(S) = (T, R), where T = {s' I (S, s) --1-* (nil, s') for some initial state 
s} and R = {(s',s(x),t(y)) I (S,s) --1-* (x?y;S',s'), for some initial states} 
(here t(y) denotes the type of y). 

The component Tin the semantics O(S) collects all the final states of succes­
sfully terminating (local) computations of S (starting from an initial state). The 
component R, on the other hand, collects all the intermediate states where con­
trol is about to perform an input, plus information about the channel involved 
and the type of the value to be read. The restriction to local non-determinism 
implies that when an input x?y is about to be executed, it will always appear 
in a context of the form x?y;S for some (possibly empty) statement S (no other 
inputs are offered as an alternative). 

The information in R corresponds with the well-known concept of the ready 
sets [17] and will be used for determining whether a program (containing a 
process type P ~ S) has a deadlocking computation. 

Our compositional semantics is based on the compatibility of a set of internal 
states (without loss of generality we may indeed restrict to sets rather than 
multisets of extended internal states s because of the additional information 
s(v)). In order to define this notion we use the set CJ.= CU {j_}, ranged over 
by n, {3, .. . , to identify processes. The idea is that the channel which initially 
links the created process with its creator will be used to identify the created 
process itself (J_ will be used to identify the root-process). We use these process 
identifiers in finite sequences of labeled inputs (a, c?v) and outputs (a, c!v) to 
indicate the process involved in the communication. Given such a sequence h 
and a channel c E C we denote by sent(h, c) the sequence of values in Val sent 
to the channel c and by rec(h, c) the sequence of values in Val received from the 
channel c. 

A history h is a (finite) sequence of labeled inputs (a, c?v) and outputs 
(a, c!v) which satisfies the following. 
Prefix invariance: For every prefix h' of h and channel c we have that the 
sequence rec(h', c) of values delivered by c is a prefix of the sequence sent(h', c) 
of values received by channel c. 
Input ownership: For every prefix ho· (a, c?v) of h, either the process a owns 
the input of the channel c in ho, or ho = hi · (a, d? c) · h2 for some channel d 
distinct from c and a owns the input of the channel c in h2. A process a is said 
to be the owner of the input of a channel c in a sequence h if, for any channel 
e, there is no occurrence in h of an output (a, e!c), and for every occurrence in 
h of an input ({3, c?w) we have a= /3. 
Output ownership: For every prefix ho· (a, c!v) of h, either the process a owns 
the output of the channel c in ho, or ho = h1 ·(a, d?c) · ~ for some channel d 
(not necessarily distinct from c) and a owns the output of the channel c in h2. 
A process a is said to be the owner of the output of a channel c in a sequence 



A Compositional Model for Confluent Dynamic Data-Flow Networks 219 

h if for any channel e there is no occurrence in h of an output (o, e!c), and for 
every occurrence in h of an output ((3, c!w) we have o = (3. 

Input/output ownership essentially states that a process cau communicate 
along a channel only if either it is the first user of that channel or it has received 
that channel via a preceding communication. Moreover, exclusive control over a 
channel is released only when that channel is outputted. 

We can obtain the local information of a process from a given history as 
follows. For a history h, an internal state s, we writes ::::: h if s(v) =(a, V) im­
plies, for every channel c, both s(c) = in(h, o:, c) and s(c) = out(h, o:, c), where 
in(h, a, c) and out(h, o:, c) denote the sequences of values received from and sent 
to the channel c by the process o: as recorded by the history h. Occurrences of 'Y 
in those sequences will denote release of control of the channel c by the process 
o. More specifically, we have in( ( o:, d! c) · h, a, c) = 'Y · in( h, o:, c) and similarly 
for out((a, d!c) · h,o:, c).Thuss::::: h basically states that the information ab­
out the communication behavior in the internal state s is compatible with the 
information given by the history h. The compatibility of h with respect to a set 
of internal states X is defined below. 

Definition 3. Let h be a histoT"y and X be a finite set of internal states. We 
say that h is compatible with X if the following two conditions hold: 

1. foreverysEX, s:::::h; 
2. there exists a finite tree (the tree of creation) with X as nodes such that 

ifs is the root of the tree then s(v) = (1.., V), for some V ~ C; 
ifs E X with s(v) = (u, V) then for all v E V there exists a unique 
direct descendent node s' E X with s' ( v) = ( v, W), for some W ~ C. 

The existence of a tree of creation ensures the uniqueness of the name of the 
created channels. It is worthwhile to observe that it is not sufficient to require 
disjointness of the names used by any two distinct existing processes, as this does 
not exclude cycles in the creation ordering (for example, two processes creating 
each other). 

Let h be a history compatible with a finite set of (local) states X. For each 
channel c which appears in X, we denote by own(h, c) and own(h, c) these­
quences of processes who had the ownership of the reference for inputting from 
and outputting to the channel c, respectively. 

For a given set of (local) states X there may be several histories, each of 
them compatible with X. The next theorem specifies the relevant information 
recorded in a history. 

Theorem 1. Let X be a finite set of (local) states, and h1 and h2 be two histories 
compatible w·ith X, For all process id's o: and channels c the following holds: 

1. in(h1 ,o:,c) = in(h2,a,c) and out(h1 ,a,c) = out(h2,a,c); 
2. sent(h1 , c) = sent(h2 , c) and rec(h1 , c) = rec(h2, c); 
Y. own(h1 , c) = own(h2 , c) and own(h1, c) = own(h2 , c). 



220 F.S. de Boer and M.M. Bonsangue 

This theorem states that the compatibility relation abstracts from the order 
of communication between different channels in a global history. For example, 
even the ordering between inputs and outputs on different channels is irrele­
vant. This contrasts with the usual models of asynchronous communicating non­
deterministic processes [14,15]. This abstraction is made possible because of the 
restriction to confluent programs. 

In order to formulate the main theorem of this paper we still need some 
more definitions. We say that a set X of extended internal states is consistent if 
there exists a history h compatible with X. Given a consistent set X of extended 
internal states s, we denote by conf ( X), the corresponding (final) configuration 
(X, a-). That is, X consists of those pairs (nil, :S) for which there exists s E X 
such that s is obtained from s by removing the additional information about 
the communicated values and the created channels. The global state a- derives 
from a history h compatible with X in the obvious way (i.e. by mapping every 
channel c such that s ( v) = ( c, V) for some s E X and V <;;;; C, to the sequence 
obtained by deleting the prefix rec(h, c) from sent(h, c)). Note that the above 
Theorem 1 guarantees that a- is indeed well-defined. 

Definition 4. We assume given Ti and Ri, for i = 1, ... , n, with Ti a set of 
(extended} internal states and Ri a set of triples of the form (s, c, t), where s is 
an extended internal state, c is a channel and t is a type (of the value to be read 
from c in the state s). 

We denote by Lli T; the set of final configurations conf (X) such that the set 
X of (extended) internal states is consistent and every state s in X belongs to 
some Ti. Additionally, for some states E To we have s(v) = (j_, V), for some 
v <;;;;c. 

Analogously, by LJi( Ti, R;) we denote the set of final configurations conf (X) 
such that X is consistent, and there exists a state s in X that does not belong to 
any Ti, and, finally, every state s in X either belongs to some T; or there exists 
a triple (s, c, t) E Ri such that either o-(c) =c. or the first value of a(c) is not 
of type t. 

Abstracting from the control information, the set of configurations LJi (Ti, Ri) 
in fact describes all possible deadlock configurations, whereas LJ; Ti describes 
all the final configurations of successfully terminating computations of the given 
program. Finally, we are in a position to formulate the main theorem of this 
paper. 

Theorem 2. Let p = {Po ~ So, ... , Pn ~ Sn} and O(S;) = (Ti, R;), i = 
0, ... , n. We have that 

Thus the observable behavior of a confluent MaC program can be obtained 
in a compositional manner from the local semantics of the statements of each 
process description of the program. The information of the ready sets of each 
local semantics is used to determine if the program deadlocks. 



A Compositional Model for Confluent Dynamic Data-Flow Networks 221 

4 Conclusion and Future Work 

To the best of the authors knowledge, we have presented a first state-based 
semantics for a confluent language for mobile data-flow networks which is com­
positional with respect to the abstract notion of observable considered in this 
paper. This notion of observable is more abstract than the bisimulation-based se­
mantics for most action-based calculi for mobility [16,10,7], and the trace-based 
semantics for state-based languages [ 12 J. 

The proposed semantics will be used for defining a compositional Hoare logic 
for confluent MaC programs along the lines of [5]. The fact that the order bet­
ween the communications between different processes and the communication 
on different channels within a process is semantically irrelevant will in general 
simplify the correctness proofs. 

References 

1. G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation 
Journal of Functional Programming, 1(1):1-69, 1993. 

2. R. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulations for the Asynchronous 
rr-calculus. Theoretical Computer Science, 195:291-324, 1998. 

3. F. Arbab, F.S. de Boer, and M.M. Bonsangue. A coordination language for mobile 
components. In Proc. of SAC 2000, pp. 166-173, ACM press, 2000. 

4. F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implemen­
tation. Concurrency: Practice and Experience, 5(1):23-70, 1993. 

5. F.S. de Boer. Reasoning about asynchronous communication in dynamically evol­
ving object structures. To appear in Theoretical Computer Science, 2000. 

6. M. Broy. Equations for describing dynamic nets of communicating systems. In 
Proc. 5th COMPASS workshop, vol. 906 of LNCS, pp. 170-187, 1995. 

7. L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. of Foundation of Software 
Science and Computational Structures, vol. 1378 of LNCS, pp. 140-155, 1998. 

8. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 
9. M. Falaschi, M. Gabbrielli, K. Marriot, and C. Palamidessi. Confluence in concur­

rent constraint programming. In Theoretical Computer Science, 183(2), 1997. 
10. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join 

calculus. In Proc. POPL'96, pp. 372-385, 1996. 
ll. R. Grosu and K. St0len. A model for mobile point-to-point data-flow networks 

without channel sharing. In Proc. AMAST'96, LNCS, 1996. 
12. G.J. Holzmann. The model checker SPIN IEEE Transactions on Software Enginee­

ring 23:5, 1997. 
13. G. Kahn. The semantics of a simple language for parallel programming. In IFIP74 

Congress, North Holland, Amsterdam, 1974. 
14. He .Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asynchrony. 

In Proc. IFIP Conf. on Programming Concepts and Methods, 1990. 
15. B. Jonsson. A fully abstract trace model for dataflow and asynchronous networks. 

Distributed Computing, 7:197-212, 1994. 
16. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and 

II. Information and Computation 100(1):1 77, 1992. 
17. E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communica­

ting processes. Acta Informatica 23:9-66, 1986. 


