Skip to main content

Regular Collections of Message Sequence Charts

Extended Abstract

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2000 (MFCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1893))

Abstract

Message Sequence Charts (MSCs) are an attractive visual formalism used during the early stages of design in domains such as telecommunication software. A popular mechanism for generating a collection of MSCs is a Hierarchical Message Sequence Chart (HMSC). However, not all HMSCs describe collections of MSCs that can be “realized” as a finite-state device. Our main goal is to pin down this notion of realizability. We propose an independent notion of regularity for collections of MSCs and explore its basic properties. In particular, we characterize regular collections of MSCs in terms of finite-state distributed automata called bounded message-passing automata, in which a set of sequential processes communicate with each other asynchronously over bounded FIFO channels. We also provide a logical characterization in terms of a natural monadic second-order logic interpreted over MSCs. It turns out that realizable collections of MSCs as specified by HMSCs constitute a strict subclass of the regular collections of MSCs.

Supported in part by IFCPAR Project 2102-1.

Basic Research in Computer Science, Centre of the Danish National Research Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Holzmann, G. J., and Peled, D.: An analyzer for message sequence charts. Software Concepts and Tools, 17(2) (1996) 70–77.

    MATH  Google Scholar 

  2. Alur, R., and Yannakakis, M.: Model checking of message sequence charts. Proc. CONCUR’99, LNCS 1664, Springer-Verlag (1999) 114–129.

    Google Scholar 

  3. Ben-Abdallah, H., and Leue, S.: Syntactic detection of process divergence and nonlocal choice in message sequence charts. Proc. TACAS’97, LNCS 1217, Springer-Verlag (1997) 259–274.

    Google Scholar 

  4. Booch, G., Jacobson, I., and Rumbaugh, J.: Unified Modeling Language User Guide. Addison-Wesley (1997).

    Google Scholar 

  5. Büchi, J. R.: On a decision method in restricted second order arithmetic. Z. Math. Logik Grundlag. Math 6 (1960) 66–92.

    Article  MATH  Google Scholar 

  6. Damm, W., and Harel, D.: LCSs: Breathing life into message sequence charts. Proc. FMOODS’99, Kluwer Academic Publishers (1999) 293–312.

    Google Scholar 

  7. Diekert, V., and Rozenberg, G. (Eds.): The book of traces. World Scientific (1995).

    Google Scholar 

  8. Ebinger, W., and Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154(1) (1996) 67–84.

    Article  MATH  MathSciNet  Google Scholar 

  9. Harel, D., and Gery, E.: Executable object modeling with statecharts. IEEE Computer, July 1997 (1997) 31–42.

    Google Scholar 

  10. Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: Towards a theory of regular MSC languages, Report RS-99-52, BRICS, Department of Computer Science, University of Aarhus, Denmark (1999).

    Google Scholar 

  11. Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: On message sequence graphs and finitely generated regular MSC languages, Proc. ICALP’2000, LNCS 1853, Springer-Verlag (2000).

    Google Scholar 

  12. ITU-TS Recommendation Z. 120: Message Sequence Chart (MSC). ITU-TS, Geneva (1997)

    Google Scholar 

  13. Ladkin, P. B., and Leue, S.: Interpreting message flow graphs. Formal Aspects of Computing 7(5) (1995) 473–509.

    Article  MATH  Google Scholar 

  14. Levin, V., and Peled, D.: Verification of message sequence charts via template matching. Proc. TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 652–666.

    Google Scholar 

  15. Mauw, S., and Reniers, M. A.: High-level message sequence charts, Proc. SDL’ 97, Elsevier (1997) 291–306.

    Google Scholar 

  16. Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping track of the latest gossip in message-passing systems. Proc. Structures in Concurrency Theory (STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249–263.

    Google Scholar 

  17. Muscholl, A.: Matching Specifications for Message Sequence Charts. Proc. FOSSACS’99, LNCS 1578, Springer-Verlag (1999) 273–287.

    Google Scholar 

  18. Muscholl, A., Peled, D., and Su, Z.: Deciding properties for message sequence charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.

    Google Scholar 

  19. Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequence charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28 (1996).

    Google Scholar 

  20. Thiagarajan, P. S., and Walukiewicz, I: An expressively complete linear time temporal logic for Mazurkiewicz traces. Proc. IEEE LICS’97 (1997) 183–194.

    Google Scholar 

  21. Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science, Volume B, North-Holland (1990) 133–191.

    Google Scholar 

  22. Vardi, M. Y., and Wolper, P.: An automata-theoretic approach to automatic program verification. In Proc. IEEE LICS’86 (1986) 332–344.

    Google Scholar 

  23. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Inf. Théor. et Appl., 21 (1987) 99–135.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henriksen, J.G., Mukund, M., Kumar, K.N., Thiagarajan, P.S. (2000). Regular Collections of Message Sequence Charts. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-44612-5_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67901-1

  • Online ISBN: 978-3-540-44612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics