Abstract
Message Sequence Charts (MSCs) are an attractive visual formalism used during the early stages of design in domains such as telecommunication software. A popular mechanism for generating a collection of MSCs is a Hierarchical Message Sequence Chart (HMSC). However, not all HMSCs describe collections of MSCs that can be “realized” as a finite-state device. Our main goal is to pin down this notion of realizability. We propose an independent notion of regularity for collections of MSCs and explore its basic properties. In particular, we characterize regular collections of MSCs in terms of finite-state distributed automata called bounded message-passing automata, in which a set of sequential processes communicate with each other asynchronously over bounded FIFO channels. We also provide a logical characterization in terms of a natural monadic second-order logic interpreted over MSCs. It turns out that realizable collections of MSCs as specified by HMSCs constitute a strict subclass of the regular collections of MSCs.
Supported in part by IFCPAR Project 2102-1.
Basic Research in Computer Science, Centre of the Danish National Research Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Holzmann, G. J., and Peled, D.: An analyzer for message sequence charts. Software Concepts and Tools, 17(2) (1996) 70–77.
Alur, R., and Yannakakis, M.: Model checking of message sequence charts. Proc. CONCUR’99, LNCS 1664, Springer-Verlag (1999) 114–129.
Ben-Abdallah, H., and Leue, S.: Syntactic detection of process divergence and nonlocal choice in message sequence charts. Proc. TACAS’97, LNCS 1217, Springer-Verlag (1997) 259–274.
Booch, G., Jacobson, I., and Rumbaugh, J.: Unified Modeling Language User Guide. Addison-Wesley (1997).
Büchi, J. R.: On a decision method in restricted second order arithmetic. Z. Math. Logik Grundlag. Math 6 (1960) 66–92.
Damm, W., and Harel, D.: LCSs: Breathing life into message sequence charts. Proc. FMOODS’99, Kluwer Academic Publishers (1999) 293–312.
Diekert, V., and Rozenberg, G. (Eds.): The book of traces. World Scientific (1995).
Ebinger, W., and Muscholl, A.: Logical definability on infinite traces. Theoretical Computer Science 154(1) (1996) 67–84.
Harel, D., and Gery, E.: Executable object modeling with statecharts. IEEE Computer, July 1997 (1997) 31–42.
Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: Towards a theory of regular MSC languages, Report RS-99-52, BRICS, Department of Computer Science, University of Aarhus, Denmark (1999).
Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: On message sequence graphs and finitely generated regular MSC languages, Proc. ICALP’2000, LNCS 1853, Springer-Verlag (2000).
ITU-TS Recommendation Z. 120: Message Sequence Chart (MSC). ITU-TS, Geneva (1997)
Ladkin, P. B., and Leue, S.: Interpreting message flow graphs. Formal Aspects of Computing 7(5) (1995) 473–509.
Levin, V., and Peled, D.: Verification of message sequence charts via template matching. Proc. TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 652–666.
Mauw, S., and Reniers, M. A.: High-level message sequence charts, Proc. SDL’ 97, Elsevier (1997) 291–306.
Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping track of the latest gossip in message-passing systems. Proc. Structures in Concurrency Theory (STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249–263.
Muscholl, A.: Matching Specifications for Message Sequence Charts. Proc. FOSSACS’99, LNCS 1578, Springer-Verlag (1999) 273–287.
Muscholl, A., Peled, D., and Su, Z.: Deciding properties for message sequence charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226–242.
Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequence charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28 (1996).
Thiagarajan, P. S., and Walukiewicz, I: An expressively complete linear time temporal logic for Mazurkiewicz traces. Proc. IEEE LICS’97 (1997) 183–194.
Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science, Volume B, North-Holland (1990) 133–191.
Vardi, M. Y., and Wolper, P.: An automata-theoretic approach to automatic program verification. In Proc. IEEE LICS’86 (1986) 332–344.
Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Inf. Théor. et Appl., 21 (1987) 99–135.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Henriksen, J.G., Mukund, M., Kumar, K.N., Thiagarajan, P.S. (2000). Regular Collections of Message Sequence Charts. In: Nielsen, M., Rovan, B. (eds) Mathematical Foundations of Computer Science 2000. MFCS 2000. Lecture Notes in Computer Science, vol 1893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44612-5_36
Download citation
DOI: https://doi.org/10.1007/3-540-44612-5_36
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67901-1
Online ISBN: 978-3-540-44612-5
eBook Packages: Springer Book Archive