Skip to main content

A Simple Linear Time Algorithm for Proper Box Rectangular Drawings of Plane Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2125))

Included in the following conference series:

Abstract

In this paper we introduce a new drawing style of a plane graph G, called proper box rectangular (PBR) drawing. It is defined to be a drawing of G such that every vertex is drawn as a rectangle, called a box, each edge is drawn as either a horizontal or a vertical line segment, and each face is drawn as a rectangle. We establish necessary and sufficient conditions for G to have a PBR drawing. We also give a simple linear time algorithm for finding such drawings. The PBR drawing is closely related to the box rectangular (BR) drawing defined by Rahman, Nakano and Nishizeki [17]. Our method can be adapted to provide a new algorithm for solving the BR drawing problem.

Research supported in part by NSF Grant CCR-9912418.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. IEEE. Tran. on Comp., 49(8):826–840, 2000.

    Article  Google Scholar 

  2. J. Bhasker and S. Sahni. A linear algorithm to find a rectangular dual of a planar triangulated graph. Algorithmica, 3:247–278, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Computational Geometry: Theory and Applications, 9:159–180, 1998.

    MATH  MathSciNet  Google Scholar 

  4. T. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In Proc. 5th European Symp. on Algorithms, LNCS 1284, pages 87–52, 1997.

    Google Scholar 

  5. G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and quasi-upward drawings with vertices of prescribed size. In Proc. of GD’99, LNCS 1731, pages 297–310, 1999.

    Google Scholar 

  6. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice-Hall, Inc., 1999.

    Google Scholar 

  7. G. Di Battista, P. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM. J. Comput., 27(6):1764–1811, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  8. U. Fossmeier and M. Kauffmann. Drawing high degree graphs with low bend numbers. In Proc. Graph Drawing’95, LNCS 1027, pages 254–266, 1995.

    Chapter  Google Scholar 

  9. Xin He. On finding the rectangular duals of planar triangulated graphs. SIAM J. Comput., 22(6):1218–1226, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4–32, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoretical Computer Science, 172:175–193, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Koźmiński and E. Kinnen. Rectangular dual of planar graphs. Networks, 15:145–157, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Koźmiński and E. Kinnen. Rectangular dualization and rectangular dissections. IEEE Trans. on Circuits and Systems, 35(11):1401–1415, 1988.

    Article  MATH  Google Scholar 

  14. A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings. Computational Geometry: Theory and Applications, 9(1/2):83–110, 1998.

    MATH  MathSciNet  Google Scholar 

  15. A. Papakostas and I. G. Tollis. Efficient orthogonal drawings of high degree graphs. Algorithmica, 26:100–125, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. S. Rahman, S. Nakano, and T. Nishizeki. Rectangular grid drawings of plane graphs. Comp. Geom. Theo. Appl., 10(3):203–220, 1998.

    MATH  MathSciNet  Google Scholar 

  17. M. S. Rahman, S. Nakano, and T. Nishizeki. Box-rectangular drawings of plane graphs. Journal of Algorithms, 37, pp. 363–398, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. S. Rahman, S. Nakano, and T. Nishizeki. A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. of Graph Algorithms and Applications, 3(4):31–62, 1999.

    MATH  MathSciNet  Google Scholar 

  19. J. M Six, K. G. Kakoulis, and I. G. Tollis. Refinement of orthogonal graph drawings. In Proc. Graph Drawing (GD’98), pages 302–315, 1999.

    Google Scholar 

  20. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Computing, 16(3):421–444, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Tran. Sys., Man, and Cybernetics, 18(1):61–79, 1988.

    Article  Google Scholar 

  22. R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits and Systems, 36:1230–1234, 1989.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, X. (2001). A Simple Linear Time Algorithm for Proper Box Rectangular Drawings of Plane Graphs. In: Dehne, F., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 2001. Lecture Notes in Computer Science, vol 2125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44634-6_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44634-6_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42423-9

  • Online ISBN: 978-3-540-44634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics