Abstract
A concise description of the XCS classifier system’s parameters, structures, and algorithms is presented as an aid to research. The algorithms are written in modularly structured pseudo code with accompanying explanations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Marco Dorigo and Marco Colombetti. Robot shaping: An experiment in behavior engineering. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge, MA, 1998.
Tim Kovacs. XCS classifier system reliably evolves accurate, complete, and minimal representations for boolean functions. In Roy, Chawdhry, and Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 59–68. Springer-Verlag, 1997.
Tim Kovacs. Deletion schemes for classifier systems. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 329–336, San Francisco, CA, 1999. Morgan Kaufmann.
Pier Luca Lanzi. A study of the generalization capabilities of XCS. In T. Baeck, editor, Proceedings of the Seventh International Conference on Genetic Algorithm, pages 418–425, San Francisco, California, 1997. Morgan Kaufmann.
Pier Luca Lanzi. An analysis of generalization in the XCS classifier system. Evolutionary Computation, 7(2):125–149, 1999.
Pier Luca Lanzi. Extending the representation of classifier conditions. Part I: From binary to messy coding. In Wolfgang Banzhaf, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 337–344, San Francisco, CA, 1999. Morgan Kaufmann.
Pier Luca Lanzi. Extending the representation of classifier conditions. Part II: From messy coding to S-expressions. In Wolfgang Banzhaf, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 345–352, San Francisco, CA, 1999. Morgan Kaufmann.
Pier Luca Lanzi. An extension to the XCS classifier system for stochastic environments. In Wolfgang Banzhaf, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 353–360, San Francisco, CA, 1999. Morgan Kaufmann.
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors. Learning classifier systems: From foundations to applications. LNAI 1813. Springer-Verlag, Berlin Heidelberg, 2000.
Pier Luca Lanzi and Stewart W. Wilson. Toward optimal classifier system performance in non-markov environments. Evoultionary Computation, 8(4):393–418, 2000.
Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press, Cambridge, MA, 1998.
Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149–175, 1995.
S. W. Wilson. Generalization in the XCS classifier system. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 665–674, San Francisco, 1998. Morgan Kaufmann.
Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Learning Classifier Systems: From Foundations to Applications, LNAI 1813, pages 209–220, Berlin Heidelberg, 2000. Springer-Verlag.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Butz, M.V., Wilson, S.W. (2001). An Algorithmic Description of XCS. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W. (eds) Advances in Learning Classifier Systems. IWLCS 2000. Lecture Notes in Computer Science(), vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44640-0_15
Download citation
DOI: https://doi.org/10.1007/3-540-44640-0_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42437-6
Online ISBN: 978-3-540-44640-8
eBook Packages: Springer Book Archive