Skip to main content

Probability-Enhanced Predictions in the Anticipatory Classifier System

  • Conference paper
  • First Online:
Advances in Learning Classifier Systems (IWLCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1996))

Included in the following conference series:

Abstract

The Anticipatory Classifier System (ACS) recently showed many capabilities new to the Learning Classifier System field. Due to its enhanced rule structure with an effect part, it forms an internal environmental representation, learns latently besides the common reward learning, and can use many cognitive processes. This paper introduces a probability-enhancement in the predictions of the ACS which enables the system to handle different kinds of non-determinism in an environment. Experiments in two different mazes will show that the ACS is now able to handle action-noise and irrelevant random attributes in the perceptions. Furthermore, applications with a recently introduced GA will reveal the general independence of the two new mechanism as well as the ability of the GA to substantially decrease the population size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Butz, M. V., Goldberg, D. E., & Stolzmann, W. (1999). New challenges for an Anticipatory Classi_er System: Hard problems and possible solutions (Il-liGAL report 99019). University of Illinois at Urbana-Champaign: Illinois Genetic Algorithms Laboratory.

    Google Scholar 

  • Butz, M. V., Goldberg, D. E., & Stolzmann, W. (2000). Introducing a genetic generalization pressure to the anticipatory classifier system: Part 1-theoretical approach. In Whitely, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I., & Beyer, H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) pp. 34–41. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Holland, J. H. (1985). Properties of the bucket brigade algorithm. In Proceedings of an International Conference on Genetic Algorithms and their Applications pp. 1–7. Carnegie-Mellon University, Pittsburgh, PA: John J. Grefenstette.

    Google Scholar 

  • Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lanzi, P. L. (1997). A study of the generalization capabilities of XCS. In Baeck, T. (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithm pp. 418–425. San Francisco, California: Morgan Kaufmann.

    Google Scholar 

  • Lanzi, P. L. (1999). An extension to the XCS classifier system for stochastic environments. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99) pp. 353–360. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Stolzmann, W. (1997). Antizipative Classifier Systeme [Anticipatory classifier systems]. Osnabrueck, Germany: Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Stolzmann, W. (1998). Anticipatory classifier systems. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., & Riolo, R. (Eds.), Genetic Programming’ 98 pp. 658–664. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Stolzmann, W. (2000). An introduction to anticipatory classifier systems. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning Classifier Systems: From Foundations to Applications, LNAI 1813 pp. 175–194. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Stolzmann, W., & Butz, M. V. (2000). Latent learning and action-planning in robots with Anticipatory Classifier Systems. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning Classifier Systems: From Foundations to Applications, LNAI 1813 pp. 301–317. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Stolzmann, W., Butz, M. V., Hoffmann, J., & Goldberg, D. E. (2000). First cognitive capabilities in the anticipatory classifier system. In Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H., & Wilson, S. W. (Eds.), From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior pp. 287–296. Cambridge, MA: MIT press.

    Google Scholar 

  • Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 272–292.

    Google Scholar 

  • Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1), 1–18.

    Article  Google Scholar 

  • Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2), 149–175.

    Article  Google Scholar 

  • Wilson, S. W. (1998). Generalization in the XCS classifier system. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., & Riolo, R. (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference pp. 665–674. San Francisco: Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butz, M.V., Goldberg, D.E., Stolzmann, W. (2001). Probability-Enhanced Predictions in the Anticipatory Classifier System. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W. (eds) Advances in Learning Classifier Systems. IWLCS 2000. Lecture Notes in Computer Science(), vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44640-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44640-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42437-6

  • Online ISBN: 978-3-540-44640-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics