Abstract
The Anticipatory Classifier System (ACS) recently showed many capabilities new to the Learning Classifier System field. Due to its enhanced rule structure with an effect part, it forms an internal environmental representation, learns latently besides the common reward learning, and can use many cognitive processes. This paper introduces a probability-enhancement in the predictions of the ACS which enables the system to handle different kinds of non-determinism in an environment. Experiments in two different mazes will show that the ACS is now able to handle action-noise and irrelevant random attributes in the perceptions. Furthermore, applications with a recently introduced GA will reveal the general independence of the two new mechanism as well as the ability of the GA to substantially decrease the population size.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Butz, M. V., Goldberg, D. E., & Stolzmann, W. (1999). New challenges for an Anticipatory Classi_er System: Hard problems and possible solutions (Il-liGAL report 99019). University of Illinois at Urbana-Champaign: Illinois Genetic Algorithms Laboratory.
Butz, M. V., Goldberg, D. E., & Stolzmann, W. (2000). Introducing a genetic generalization pressure to the anticipatory classifier system: Part 1-theoretical approach. In Whitely, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I., & Beyer, H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) pp. 34–41. San Francisco, CA: Morgan Kaufmann.
Holland, J. H. (1985). Properties of the bucket brigade algorithm. In Proceedings of an International Conference on Genetic Algorithms and their Applications pp. 1–7. Carnegie-Mellon University, Pittsburgh, PA: John J. Grefenstette.
Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.
Lanzi, P. L. (1997). A study of the generalization capabilities of XCS. In Baeck, T. (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithm pp. 418–425. San Francisco, California: Morgan Kaufmann.
Lanzi, P. L. (1999). An extension to the XCS classifier system for stochastic environments. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99) pp. 353–360. San Francisco, CA: Morgan Kaufmann.
Stolzmann, W. (1997). Antizipative Classifier Systeme [Anticipatory classifier systems]. Osnabrueck, Germany: Shaker Verlag, Aachen, Germany.
Stolzmann, W. (1998). Anticipatory classifier systems. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., & Riolo, R. (Eds.), Genetic Programming’ 98 pp. 658–664. San Francisco: Morgan Kaufmann.
Stolzmann, W. (2000). An introduction to anticipatory classifier systems. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning Classifier Systems: From Foundations to Applications, LNAI 1813 pp. 175–194. Berlin: Springer-Verlag.
Stolzmann, W., & Butz, M. V. (2000). Latent learning and action-planning in robots with Anticipatory Classifier Systems. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning Classifier Systems: From Foundations to Applications, LNAI 1813 pp. 301–317. Berlin: Springer-Verlag.
Stolzmann, W., Butz, M. V., Hoffmann, J., & Goldberg, D. E. (2000). First cognitive capabilities in the anticipatory classifier system. In Meyer, J.-A., Berthoz, A., Floreano, D., Roitblat, H., & Wilson, S. W. (Eds.), From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior pp. 287–296. Cambridge, MA: MIT press.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 272–292.
Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2(1), 1–18.
Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2), 149–175.
Wilson, S. W. (1998). Generalization in the XCS classifier system. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., & Riolo, R. (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference pp. 665–674. San Francisco: Morgan Kaufmann.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Butz, M.V., Goldberg, D.E., Stolzmann, W. (2001). Probability-Enhanced Predictions in the Anticipatory Classifier System. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W. (eds) Advances in Learning Classifier Systems. IWLCS 2000. Lecture Notes in Computer Science(), vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44640-0_4
Download citation
DOI: https://doi.org/10.1007/3-540-44640-0_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42437-6
Online ISBN: 978-3-540-44640-8
eBook Packages: Springer Book Archive