
Learning 
urves for Gaussian pro
esses models:Flu
tuations and universalityD�orthe Malzahn and Manfred OpperDepartment of Computer S
ien
e and Applied Mathemati
sAston University, Birmingham B4 7ET, United Kingdomfmalzahnd,oppermg�aston.a
.ukAbstra
t. Based on a statisti
al me
hani
s approa
h, we develop amethod for approximately 
omputing average 
ase learning 
urves andtheir sample 
u
tuations for Gaussian pro
ess regression models. We giveexamples for the Wiener pro
ess and show that universal relations (thatare independent of the input distribution) between error measures 
anbe derived.1 Introdu
tionGaussian pro
ess (GP) models have gained 
onsiderable interest in the NeuralComputation Community (see e.g.[1{4℄) in re
ent years. However, being non-parametri
 models by 
onstru
tion their theoreti
al understanding is less welldeveloped 
ompared to simpler parametri
 models like neural networks. In thispaper we present new results for approximate 
omputation of learning 
urvesby further developing our framework from [5℄ whi
h was based on a statisti-
al me
hani
s approa
h. In 
ontrast to most previous appli
ations of statisti
alme
hani
s to learning theory the method is not restri
ted to the so 
alled "ther-modynami
" limit whi
h would require a high dimensional input spa
e.Our approa
h has the advantage that it is rather general and may be appliedto di�erent likelihoods and allows for a systemati
 
omputation of 
orre
tions.In this 
ontribution we will rederive our approximation in an new way basedon a general variational method. We will show that we 
an 
ompute other in-teresting quantities like the sample 
u
tuations of the generalization error. Nev-ertheless, one may 
riti
ise this and similar approa
hes of statisti
al physi
sas being not relevant for pra
ti
al situations, be
ause the analysis requires theknowledge of the input distribution whi
h is usually not available. However, wewill show (so far for a toy example) that our approximation predi
ts universalrelations (that are independent of the input distribution) between di�erent errormeasures. We expe
t that similar relations may be obtained for more pra
ti
alsituations.2 Regression with Gaussian pro
essesRegression with Gaussian pro
esses is based on a statisti
al model [2℄ whereobservations y(x) 2 R at input points x 2 RD are assumed to be 
orrupted values



2 D. Malzahn, M. Opperof an unknown fun
tion f(x). For independent Gaussian noise with varian
e �2,the likelihood for a set of m example data D = (y(x1); : : : ; y(xm))) (
onditionedon the fun
tion f) is given byP (Djf) = exp��Pmi=1 (yi�f(xi))22�2 �(2��2)m2 (1)where yi := y(xi). To estimate the fun
tion f(x), one supplies the a priori in-formation that f is a realization of a Gaussian pro
ess (random �eld) with zeromean and 
ovarian
e C(x; x0) = E[f(x)f(x0)℄; where E denotes the expe
tationover the Gaussian pro
ess prior. Predi
tions f̂(x) for the unknown fun
tion fare 
omputed as the posterior expe
tation of f(x), i.e. byf̂(xjD) = Eff(x)jDg = Ef(x)P (Djf)Zm (2)where the partition fun
tion Zm normalises the posterior.In the sequel, we 
all the true data generating fun
tion f� in order to dis-tinguish it from the fun
tions over whi
h we integrate in the expe
tations.We will 
ompute approximations for the learning 
urve, i.e. the generaliza-tion (mean square) error averaged over independent draws of example data,i.e. "g = [(f�(x)� f̂ (xjD))2℄(x;D) as a fun
tion of m, the sample size. We will usebra
kets [: : :℄ to denote averages over data sets where we assume that the inputsxi are drawn independently at random from a density p(x). The index at thebra
ket denotes the quantities that are averaged over. For example, [: : :℄(x;D) de-notes both an average over example dataD and a test input drawn from the samedensity. We will also approximate the sample 
u
tuations of the generalizationerror de�ned by �"g =q[[(f�(x) � f̂(xjD))2℄2x℄D � "2g:3 The Partition Fun
tionAs typi
al of statisti
al me
hani
s approa
hes, we base our analysis on theaveraged "free energy" [� lnZm℄D where the partition fun
tion Zm (see Eq.(2)) is Zm = EP (Djf): [lnZm℄D serves as a generating fun
tion for suitableposterior averages. The 
omputation of [lnZm℄D is based on the repli
a tri
k[lnZm℄D = limn!0 � ln[Znm℄D�n , where we 
ompute [Zn℄D for integer n and per-form the 
ontinuation at the end. We haveZn(m) := [Znm℄D = En 24exp��Pna=1 (fa(x)�y)22�2 �p2��2n 35mx ; (3)where En denotes the expe
tation over the GPmeasure for the n-times repli
atedGPs fa(x), a = 1; : : : ; n.
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urves for GP models: Flu
tuations and universality 3For further analyti
al treatment, it is 
onvenient to introdu
e the "grand
anoni
al" free energy�n(�) = 1Xm=0 e�mm! Zn(m) = En exp[�Hn℄ (4)where the energy Hn is a fun
tional of ffagHn = �e� 24exp��Pna=1 (fa(x)�y)22�2 �p2��2n 35x : (5)This represents a "poissonized" version of our model where the number of ex-amples is 
u
tuating. For suÆ
iently large m, the relative 
u
tuations are smalland both models will give the same answer, provided the "
hemi
al potential" �and the desired m are related by m = � ln�n(�)�� . Using a Lapla
e argument forthe sum in Eq. (4), we have lnZn(m) � ln�n(�)+m(lnm� 1)�m�. Note thatas a result of the data average, the model de�ned by Hn is no longer Gaussianand we 
annot 
ompute ln�n(�) exa
tly. We will therefore resort to a variationalapproximation.4 Variational approximationOur goal is to approximate Hn by a simpler quadrati
 Hamiltonian of the formH0n = 12Pna;b=1 �ab[(fa(x) � y)(fb(x) � y)℄(x;y), where �ab are parameters to beoptimised. Assuming �ab to be �xed for the moment, we 
an expand the freeenergy in a power series in the deviations H �H0n� ln�n(�) = � lnEn exp[�H0n℄+hH�H0ni0�12�h(H�H0n)2i0�hH�H0ni20��: : : :(6)The bra
kets h: : :i0 denote averages with respe
t to the e�e
tive Gaussian mea-sure indu
ed by the repli
ated prior and e�H0n . As is well known [6℄, the �rsttwo terms in Eq. (6) are an upper bound to � ln�n(�). We will optimise H0n, by
hoosing the matrix �ab su
h that this upper bound is minimised. Thereafter,a repli
a symmetri
 
ontinuation to real n is a
hieved by restri
ting the vari-ations to the form �ab = � for a 6= b and �aa = �0. Note however, that afterthis 
ontinuation we 
an no longer establish a bound on � ln�n(�). To 
omputethe generalization error and other quantities we will use the e�e
tive Gaussianmeasure indu
ed by H0n. The variational equations on �0 and � 
an be expressedas fun
tionals of the lo
al generalization error"g(x) = limn!0h(f1(x)� f�(x))(f2(x)� f�(x))i0 (7)and the lo
al posterior varian
evp(x) = limn!0h(f1(x)� f�(x))2i0 � "g(x): (8)



4 D. Malzahn, M. OpperBy negle
ting variations of these quantities with x we arrive at the following setof equations [Ĉ(x; x)℄x + �2 = m(�0 � �) (9)[ ~E2(f(x)� y)℄(x;y) � �[Ĉ2(x; x0)℄(x;x0) = � m�(�0 � �)2 (10)that determine the values of the variational parameters �0 and �. Eqs. (9,10)require the mean ~E(f(x) � y) and the 
ovarian
e Ĉ(x; x0) = Ê(f(x)f(x0)) withrespe
t to the Gaussian measures ~E / E exp(� (�0��)2 [(f(x)� y)2℄x;y) and Ê /E exp(� (�0��)2 [f2(x)℄x).5 Results for learning 
urves and 
u
tuations
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Fig. 1. Learning 
urves (left) and their Flu
tuations (right) for the periodi
 WienerPro
ess. Our theory is represented by lines whereas symbols give simulation resultsWe 
ompare our analyti
al results for the generalization error "g, the trainingerror "t = [Pmi=1(f̂(xijD)� yi(x))2℄D=m and for their sample 
u
tuations �"g ,�"t with simulations of GP regression. For simpli
ity, we have 
hosen the Wienerpro
ess C(x; x0) = min(x; x0) as a toy model. For Fig. 1, the target fun
tion f�is a �xed but random realisation from the prior distribution and the data noiseis Gaussian with varian
e �2 = 0:01. The left panel of Fig. 1 shows learning
urves while their 
u
tuations are displayed in the right panel. Symbols representsimulation results and our theory is given by lines. The training error "t 
onvergesto the noise level �2. As one 
an see from the pi
tures our theory is very a

uratewhen m is suÆ
iently large. It also predi
ts the initial in
rease of �"t for smallvalues of m (see inset of Fig. 1, right panel).
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Fig. 2. Bayes errors for the periodi
 Wiener Pro
ess, �2 = 0:01. Theory (bold line)versus Simulations (Symbols). Simulations have been performed for two input distri-butions x 2 [0; 1℄ and p(x) = 1 (squares) or p(x) = 2x (triangles). The number m ofexample data is indi
ated by arrows. As m in
reases, the generalization error "g;B andthe error bars de
rease. The dashed line illustrates the trivial limes "g;B � "t;B form!16 Universal relationsAlthough the expli
it 
omputations of our results requires the knowledge of thedata distribution, we 
an establish universal relations (valid in the framework ofour approximation) whi
h are independent of this density. We restri
t ourselvesto the full Bayesian s
enario where all quantities are averaged over the priordistribution of true fun
tions f�. The un
ertainty of the predi
tion at a pointx is measured by the posterior varian
e "B(x) = E(f̂(xjD) � f(x))2. Bayesiangeneralization errors de�ned as "g;B = ["B(x)℄(x;D) for this s
enario were 
om-puted previously by Peter Solli
h [7℄ under the assumption of a uniform inputdistribution. Our results for this spe
ial 
ase turn out to be identi
al to Solli
h'sresult.However, extending our framework to arbitrary input densities, we �nd thatthe Bayesian generalization error and its empiri
al estimate "t;B = 1mPmi=1["B(xi)℄Dare expressed by a single variational parameter of our model only. This 
an beeliminated to give the following surprisingly simple relation�"g;B � �"t;B1� �"t;B (11)where �"t;B = "t;B=�2 and �"g;B = "g;B=�2. Fig. 2 displays simulation results forWiener pro
ess regression with Gaussian noise of varian
e �2 = 0:01. We usedtwo di�erent input distributions p(x) = 1 (squares) and p(x) = 2x (triangles),x 2 [0; 1℄. The number m of example data is indi
ated by arrows. Eq. (11) isrepresented by the bold line and holds for suÆ
iently large m.



6 D. Malzahn, M. Opper7 Future workIn the future, we will extend our method in the following dire
tions:{ Obviously, our method is not restri
ted to a regression model but 
an alsobe dire
tly generalized to other likelihoods su
h as the 
lassi�
ation 
ase [4,8℄. A further appli
ation to Support Ve
tor Ma
hines should be possible.{ We will establish further universal relations between di�erent error measuresfor the more realisti
 
ase of a �xed (unknown) fun
tion f�(x). It will beinteresting if su
h relations may be useful to 
onstru
t new methods formodel sele
tion, i.e. hyper-parameter estimation.{ By 
omputing the in
uen
e of the �rst negle
ted term in Eq. (6) whi
h isquadrati
 inHn�H0n, we will estimate the region in whi
h our approximationis valid.A
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