Abstract
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D. J. C. Mackay, Gaussian Processes, A Replacement for Neural Networks, NIPS tutorial 1997, May be obtained from http://wol.ra.phy.cam.ac.uk/pub/mackay/.
C. K. I. Williams and C. E. Rasmussen, Gaussian Processes for Regression, in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer and M. E. Hasselmo eds., 514–520, MIT Press (1996).
C. K. I. Williams, Computing with Infinite Networks, in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan and T. Petsche, eds., 295–301. MIT Press (1997).
D. Barber and C. K. I. Williams, Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo, in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan and T. Petsche, eds., 340–346. MIT Press (1997).
D. Malzahn, M. Opper, Learning curves for Gaussian processes regression: A framework for good approximations, in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich and V. Tresp, eds., MIT Press (2001), to appear.
R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, Mc Graw-Hill Inc., 1965.
P. Sollich, Learning curves for Gaussian processes, in Neural Information Processing Systems 11, M. S. Kearns, S. A. Solla and D. A. Cohn, eds. 344–350, MIT Press (1999).
L. Csató, E. Fokoué, M. Opper, B. Schottky, and O. Winther. Efficient approaches to Gaussian process classification. In Neural Information Processing Systems 12, MIT Press (2000).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Malzahn, D., Opper, M. (2001). Learning Curves for Gaussian Processes Models: Fluctuations and Universality. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_39
Download citation
DOI: https://doi.org/10.1007/3-540-44668-0_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42486-4
Online ISBN: 978-3-540-44668-2
eBook Packages: Springer Book Archive