
Learning urves for Gaussian proesses models:Flutuations and universalityD�orthe Malzahn and Manfred OpperDepartment of Computer Siene and Applied MathematisAston University, Birmingham B4 7ET, United Kingdomfmalzahnd,oppermg�aston.a.ukAbstrat. Based on a statistial mehanis approah, we develop amethod for approximately omputing average ase learning urves andtheir sample utuations for Gaussian proess regression models. We giveexamples for the Wiener proess and show that universal relations (thatare independent of the input distribution) between error measures anbe derived.1 IntrodutionGaussian proess (GP) models have gained onsiderable interest in the NeuralComputation Community (see e.g.[1{4℄) in reent years. However, being non-parametri models by onstrution their theoretial understanding is less welldeveloped ompared to simpler parametri models like neural networks. In thispaper we present new results for approximate omputation of learning urvesby further developing our framework from [5℄ whih was based on a statisti-al mehanis approah. In ontrast to most previous appliations of statistialmehanis to learning theory the method is not restrited to the so alled "ther-modynami" limit whih would require a high dimensional input spae.Our approah has the advantage that it is rather general and may be appliedto di�erent likelihoods and allows for a systemati omputation of orretions.In this ontribution we will rederive our approximation in an new way basedon a general variational method. We will show that we an ompute other in-teresting quantities like the sample utuations of the generalization error. Nev-ertheless, one may ritiise this and similar approahes of statistial physisas being not relevant for pratial situations, beause the analysis requires theknowledge of the input distribution whih is usually not available. However, wewill show (so far for a toy example) that our approximation predits universalrelations (that are independent of the input distribution) between di�erent errormeasures. We expet that similar relations may be obtained for more pratialsituations.2 Regression with Gaussian proessesRegression with Gaussian proesses is based on a statistial model [2℄ whereobservations y(x) 2 R at input points x 2 RD are assumed to be orrupted values



2 D. Malzahn, M. Opperof an unknown funtion f(x). For independent Gaussian noise with variane �2,the likelihood for a set of m example data D = (y(x1); : : : ; y(xm))) (onditionedon the funtion f) is given byP (Djf) = exp��Pmi=1 (yi�f(xi))22�2 �(2��2)m2 (1)where yi := y(xi). To estimate the funtion f(x), one supplies the a priori in-formation that f is a realization of a Gaussian proess (random �eld) with zeromean and ovariane C(x; x0) = E[f(x)f(x0)℄; where E denotes the expetationover the Gaussian proess prior. Preditions f̂(x) for the unknown funtion fare omputed as the posterior expetation of f(x), i.e. byf̂(xjD) = Eff(x)jDg = Ef(x)P (Djf)Zm (2)where the partition funtion Zm normalises the posterior.In the sequel, we all the true data generating funtion f� in order to dis-tinguish it from the funtions over whih we integrate in the expetations.We will ompute approximations for the learning urve, i.e. the generaliza-tion (mean square) error averaged over independent draws of example data,i.e. "g = [(f�(x)� f̂ (xjD))2℄(x;D) as a funtion of m, the sample size. We will usebrakets [: : :℄ to denote averages over data sets where we assume that the inputsxi are drawn independently at random from a density p(x). The index at thebraket denotes the quantities that are averaged over. For example, [: : :℄(x;D) de-notes both an average over example dataD and a test input drawn from the samedensity. We will also approximate the sample utuations of the generalizationerror de�ned by �"g =q[[(f�(x) � f̂(xjD))2℄2x℄D � "2g:3 The Partition FuntionAs typial of statistial mehanis approahes, we base our analysis on theaveraged "free energy" [� lnZm℄D where the partition funtion Zm (see Eq.(2)) is Zm = EP (Djf): [lnZm℄D serves as a generating funtion for suitableposterior averages. The omputation of [lnZm℄D is based on the replia trik[lnZm℄D = limn!0 � ln[Znm℄D�n , where we ompute [Zn℄D for integer n and per-form the ontinuation at the end. We haveZn(m) := [Znm℄D = En 24exp��Pna=1 (fa(x)�y)22�2 �p2��2n 35mx ; (3)where En denotes the expetation over the GPmeasure for the n-times repliatedGPs fa(x), a = 1; : : : ; n.



Learning urves for GP models: Flutuations and universality 3For further analytial treatment, it is onvenient to introdue the "grandanonial" free energy�n(�) = 1Xm=0 e�mm! Zn(m) = En exp[�Hn℄ (4)where the energy Hn is a funtional of ffagHn = �e� 24exp��Pna=1 (fa(x)�y)22�2 �p2��2n 35x : (5)This represents a "poissonized" version of our model where the number of ex-amples is utuating. For suÆiently large m, the relative utuations are smalland both models will give the same answer, provided the "hemial potential" �and the desired m are related by m = � ln�n(�)�� . Using a Laplae argument forthe sum in Eq. (4), we have lnZn(m) � ln�n(�)+m(lnm� 1)�m�. Note thatas a result of the data average, the model de�ned by Hn is no longer Gaussianand we annot ompute ln�n(�) exatly. We will therefore resort to a variationalapproximation.4 Variational approximationOur goal is to approximate Hn by a simpler quadrati Hamiltonian of the formH0n = 12Pna;b=1 �ab[(fa(x) � y)(fb(x) � y)℄(x;y), where �ab are parameters to beoptimised. Assuming �ab to be �xed for the moment, we an expand the freeenergy in a power series in the deviations H �H0n� ln�n(�) = � lnEn exp[�H0n℄+hH�H0ni0�12�h(H�H0n)2i0�hH�H0ni20��: : : :(6)The brakets h: : :i0 denote averages with respet to the e�etive Gaussian mea-sure indued by the repliated prior and e�H0n . As is well known [6℄, the �rsttwo terms in Eq. (6) are an upper bound to � ln�n(�). We will optimise H0n, byhoosing the matrix �ab suh that this upper bound is minimised. Thereafter,a replia symmetri ontinuation to real n is ahieved by restriting the vari-ations to the form �ab = � for a 6= b and �aa = �0. Note however, that afterthis ontinuation we an no longer establish a bound on � ln�n(�). To omputethe generalization error and other quantities we will use the e�etive Gaussianmeasure indued by H0n. The variational equations on �0 and � an be expressedas funtionals of the loal generalization error"g(x) = limn!0h(f1(x)� f�(x))(f2(x)� f�(x))i0 (7)and the loal posterior varianevp(x) = limn!0h(f1(x)� f�(x))2i0 � "g(x): (8)



4 D. Malzahn, M. OpperBy negleting variations of these quantities with x we arrive at the following setof equations [Ĉ(x; x)℄x + �2 = m(�0 � �) (9)[ ~E2(f(x)� y)℄(x;y) � �[Ĉ2(x; x0)℄(x;x0) = � m�(�0 � �)2 (10)that determine the values of the variational parameters �0 and �. Eqs. (9,10)require the mean ~E(f(x) � y) and the ovariane Ĉ(x; x0) = Ê(f(x)f(x0)) withrespet to the Gaussian measures ~E / E exp(� (�0��)2 [(f(x)� y)2℄x;y) and Ê /E exp(� (�0��)2 [f2(x)℄x).5 Results for learning urves and utuations
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Fig. 1. Learning urves (left) and their Flutuations (right) for the periodi WienerProess. Our theory is represented by lines whereas symbols give simulation resultsWe ompare our analytial results for the generalization error "g, the trainingerror "t = [Pmi=1(f̂(xijD)� yi(x))2℄D=m and for their sample utuations �"g ,�"t with simulations of GP regression. For simpliity, we have hosen the Wienerproess C(x; x0) = min(x; x0) as a toy model. For Fig. 1, the target funtion f�is a �xed but random realisation from the prior distribution and the data noiseis Gaussian with variane �2 = 0:01. The left panel of Fig. 1 shows learningurves while their utuations are displayed in the right panel. Symbols representsimulation results and our theory is given by lines. The training error "t onvergesto the noise level �2. As one an see from the pitures our theory is very auratewhen m is suÆiently large. It also predits the initial inrease of �"t for smallvalues of m (see inset of Fig. 1, right panel).
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Fig. 2. Bayes errors for the periodi Wiener Proess, �2 = 0:01. Theory (bold line)versus Simulations (Symbols). Simulations have been performed for two input distri-butions x 2 [0; 1℄ and p(x) = 1 (squares) or p(x) = 2x (triangles). The number m ofexample data is indiated by arrows. As m inreases, the generalization error "g;B andthe error bars derease. The dashed line illustrates the trivial limes "g;B � "t;B form!16 Universal relationsAlthough the expliit omputations of our results requires the knowledge of thedata distribution, we an establish universal relations (valid in the framework ofour approximation) whih are independent of this density. We restrit ourselvesto the full Bayesian senario where all quantities are averaged over the priordistribution of true funtions f�. The unertainty of the predition at a pointx is measured by the posterior variane "B(x) = E(f̂(xjD) � f(x))2. Bayesiangeneralization errors de�ned as "g;B = ["B(x)℄(x;D) for this senario were om-puted previously by Peter Sollih [7℄ under the assumption of a uniform inputdistribution. Our results for this speial ase turn out to be idential to Sollih'sresult.However, extending our framework to arbitrary input densities, we �nd thatthe Bayesian generalization error and its empirial estimate "t;B = 1mPmi=1["B(xi)℄Dare expressed by a single variational parameter of our model only. This an beeliminated to give the following surprisingly simple relation�"g;B � �"t;B1� �"t;B (11)where �"t;B = "t;B=�2 and �"g;B = "g;B=�2. Fig. 2 displays simulation results forWiener proess regression with Gaussian noise of variane �2 = 0:01. We usedtwo di�erent input distributions p(x) = 1 (squares) and p(x) = 2x (triangles),x 2 [0; 1℄. The number m of example data is indiated by arrows. Eq. (11) isrepresented by the bold line and holds for suÆiently large m.



6 D. Malzahn, M. Opper7 Future workIn the future, we will extend our method in the following diretions:{ Obviously, our method is not restrited to a regression model but an alsobe diretly generalized to other likelihoods suh as the lassi�ation ase [4,8℄. A further appliation to Support Vetor Mahines should be possible.{ We will establish further universal relations between di�erent error measuresfor the more realisti ase of a �xed (unknown) funtion f�(x). It will beinteresting if suh relations may be useful to onstrut new methods formodel seletion, i.e. hyper-parameter estimation.{ By omputing the inuene of the �rst negleted term in Eq. (6) whih isquadrati inHn�H0n, we will estimate the region in whih our approximationis valid.AknowledgementThis work has been supported by EPSRC grant GR/M81601.Referenes1. D. J. C. Makay, Gaussian Proesses, A Replaement for Neu-ral Networks, NIPS tutorial 1997, May be obtained fromhttp://wol.ra.phy.am.a.uk/pub/makay/.2. C. K. I. Williams and C. E. Rasmussen, Gaussian Proesses for Regression, inNeural Information Proessing Systems 8, D. S. Touretzky, M. C. Mozer and M.E. Hasselmo eds., 514-520, MIT Press (1996).3. C. K. I. Williams, Computing with In�nite Networks, in Neural Information Pro-essing Systems 9, M. C. Mozer, M. I. Jordan and T. Petshe, eds., 295-301. MITPress (1997).4. D. Barber and C. K. I. Williams, Gaussian Proesses for Bayesian Classi�ation viaHybrid Monte Carlo, in Neural Information Proessing Systems 9, M . C. Mozer,M. I. Jordan and T. Petshe, eds., 340-346. MIT Press (1997).5. D. Malzahn, M. Opper, Learning urves for Gaussian proesses regression: A frame-work for good approximations, in Neural Information Proessing Systems 13, T.K. Leen, T. G. Dietterih and V. Tresp, eds., MIT Press (2001) to appear.6. R. P. Feynman and A. R. Hibbs, Quantum mehanis and path integrals, MGraw-Hill In., 1965.7. P. Sollih, Learning urves for Gaussian proesses, in Neural Information Proess-ing Systems 11, M. S. Kearns, S. A. Solla and D. A. Cohn, eds. 344 - 350, MITPress (1999).8. L. Csat�o, E. Fokou�e, M. Opper, B. Shottky, and O. Winther. EÆient approahesto Gaussian proess lassi�ation. In Advanes in Neural Information ProessingSystems, volume 12, 2000.


