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Abstract. Based on a statistical mechanics approach, we develop a
method for approximately computing average case learning curves and
their sample fluctuations for Gaussian process regression models. We give
examples for the Wiener process and show that universal relations (that
are independent of the input distribution) between error measures can
be derived.

1 Introduction

Gaussian process (GP) models have gained considerable interest in the Neural
Computation Community (see e.g.[1-4]) in recent years. However, being non-
parametric models by construction their theoretical understanding is less well
developed compared to simpler parametric models like neural networks. In this
paper we present new results for approximate computation of learning curves
by further developing our framework from [5] which was based on a statisti-
cal mechanics approach. In contrast to most previous applications of statistical
mechanics to learning theory the method is not restricted to the so called ”ther-
modynamic” limit which would require a high dimensional input space.

Our approach has the advantage that it is rather general and may be applied
to different likelihoods and allows for a systematic computation of corrections.

In this contribution we will rederive our approximation in an new way based
on a general variational method. We will show that we can compute other in-
teresting quantities like the sample fluctuations of the generalization error. Nev-
ertheless, one may criticise this and similar approaches of statistical physics
as being not relevant for practical situations, because the analysis requires the
knowledge of the input distribution which is usually not available. However, we
will show (so far for a toy example) that our approximation predicts universal
relations (that are independent of the input distribution) between different error
measures. We expect that similar relations may be obtained for more practical
situations.

2 Regression with Gaussian processes

Regression with Gaussian processes is based on a statistical model [2] where
observations y(x) € R at input points z € R are assumed to be corrupted values
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of an unknown function f(z). For independent Gaussian noise with variance o2,
the likelihood for a set of m example data D = (y(x1),...,y(zm))) (conditioned
on the function f) is given by

exp (_ Y (yi—QfU(gi))Q)

P(DIf) = GnT) T

(1)

where y; = y(z;). To estimate the function f(z), one supplies the a priori in-
formation that f is a realization of a Gaussian process (random field) with zero
mean and covariance C(z,z') = E[f(z)f(x')], where E denotes the expectation
over the Gaussian process prior. Predictions f(:c) for the unknown function f
are computed as the posterior expectation of f(z), i.e. by

Ef(x)P(D\f)

flalD) = B{1()|D} = L5

(2)
where the partition function Z,, normalises the posterior.

In the sequel, we call the true data generating function f* in order to dis-
tinguish it from the functions over which we integrate in the expectations.
We will compute approximations for the learning curve, i.e. the generaliza-
tion (mean square) error averaged over independent draws of example data,
ie. gy =[(f*(=) —f(a:|D))2](z,D) as a function of m, the sample size. We will use
brackets [...] to denote averages over data sets where we assume that the inputs
x; are drawn independently at random from a density p(z). The index at the
bracket denotes the quantities that are averaged over. For example, [.. ], p) de-
notes both an average over example data D and a test input drawn from the same
density. We will also approximate the sample fluctuations of the generalization

error defined by Ae, = \/[[(f*(a:) — f(z|D))*12]p - £3.

3 The Partition Function

As typical of statistical mechanics approaches, we base our analysis on the
averaged "free energy” [—In Z,|p where the partition function Z,, (see Eq.
(2)) is Zym = EP(D|f). [InZy]p serves as a generating function for suitable
posterior averages. The computation of [In Z,,]p is based on the replica trick
nZ,]p = lim,_g %, where we compute [Z"]p for integer n and per-
form the continuation at the end. We have

exp (_ Y (fa(;;;y)Q)

Zn(m) = [Z3]p = En \/Wn

(3)

T

where F,, denotes the expectation over the GP measure for the n-times replicated
GPs fu(z),a=1,...,n.
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For further analytical treatment, it is convenient to introduce the ”grand
canonical” free energy

a1 = 3 2, (m) = Ey expl-H,) @

m=0

N

where the energy H,, is a functional of {f,}

exp (_ S (fa(;ggy)Q)

H, = —e"
" Vero?"

(5)

T

This represents a ”poissonized” version of our model where the number of ex-
amples is fluctuating. For sufficiently large m, the relative fluctuations are small
and both models will give the same answer, provided the ”chemical potential”
and the desired m are related by m = %ﬁ:‘(“). Using a Laplace argument for
the sum in Eq. (4), we have In Z,(m) ~ In £, (u) + m(Inm — 1) — mpu. Note that
as a result of the data average, the model defined by H, is no longer Gaussian
and we cannot compute In =, (u) exactly. We will therefore resort to a variational
approximation.

4 Variational approximation

Our goal is to approximate H,, by a simpler quadratic Hamiltonian of the form
HY =1 > p=1 Nab[(fa(x) = y)(fo(x) = ¥)](a,y)> Where nqp are parameters to be
optimised. Assuming 7, to be fixed for the moment, we can expand the free
energy in a power series in the deviations H — HQ

102, (1) = ~ In By expl- HYJ+(H—HY)o— 5 (<<H—H2>2>o—<H—H2>%) -

(6)
The brackets (...)o denote averages with respect to the effective Gaussian mea-
sure induced by the replicated prior and e~Hu. As is well known [6], the first
two terms in Eq. (6) are an upper bound to —In =, (u). We will optimise H?, by
choosing the matrix 7, such that this upper bound is minimised. Thereafter,
a replica symmetric continuation to real n is achieved by restricting the vari-
ations to the form 7., = n for a # b and 1,, = 1o. Note however, that after
this continuation we can no longer establish a bound on — In =, (u). To compute
the generalization error and other quantities we will use the effective Gaussian
measure induced by H?. The variational equations on 79 and n can be expressed
as functionals of the local generalization error

gg(x) = lim ((f1(z) = f*(2))(f2(2) = 7 (2)))o (7)

n—0

and the local posterior variance

vp(z) = lim((fi(z) = f*(2))*)o — 4(2). (8)

n—0
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By neglecting variations of these quantities with z we arrive at the following set
of equations

A m

Clz,2)]s + 0> = ———— 9

[C (2, )] o= (9)
E2(f(z) = Y]z — nlC?(z,2' xm/:—L 10
[EZ(F(2) = @,y) = nlC™ (2, 2")](z 2r) (o =12 (10)
that determine the values of the variational parameters 7o and 7. Eqs. (9,10)
require the mean E(f(z) —y) and the covariance C'(z,z') = E(f(z)f(z')) with

respect to the Gaussian measures £ o Eexp(—@[(f(a:) —9)?ls,y) and E x
Eexp(- 212 (@)).

5 Results for learning curves and fluctuations

. Learning Curves . Fluctuations
10 E T T T T T T T E 10 F T T T T T T
Theory: Lines 1 E Theory: Lines
Simulation: Symbols ] [ Simulation: Symbols

Error Measures
uctuation of Error Measures

4] L 1 L 1 L 1 L -4 L | L 1 L 1 L
0 50 100 150 200 0 50 100 150 200

Number m of Example Data Number m of Example Data

Fig. 1. Learning curves (left) and their Fluctuations (right) for the periodic Wiener
Process. Our theory is represented by lines whereas symbols give simulation results

We compare our analytical results for the generalization error 4, the training
error &; = [Y7, (f(z:] D) — yi(x))?]p/m and for their sample fluctuations Ae,,
Ag; with simulations of GP regression. For simplicity, we have chosen the Wiener
process C(z,z') = min(z,z') as a toy model. For Fig. 1, the target function f*
is a fixed but random realisation from the prior distribution and the data noise
is Gaussian with variance 02 = 0.01. The left panel of Fig. 1 shows learning
curves while their fluctuations are displayed in the right panel. Symbols represent
simulation results and our theory is given by lines. The training error £; converges
to the noise level 2. As one can see from the pictures our theory is very accurate
when m is sufficiently large. It also predicts the initial increase of Ae; for small
values of m (see inset of Fig. 1, right panel).



Learning curves for GP models: Fluctuations and universality 5

5 . T . ; . ;

| — Theory
< Simulation, p(x)=2x
4 o Simulation, p(x)=1

Fig. 2. Bayes errors for the periodic Wiener Process, 0> = 0.01. Theory (bold line)
versus Simulations (Symbols). Simulations have been performed for two input distri-
butions z € [0,1] and p(z) = 1 (squares) or p(z) = 2z (iriangles). The number m of
example data is indicated by arrows. As m increases, the generalization error ¢4, 5 and
the error bars decrease. The dashed line illustrates the trivial limes €4, ~ &5 for
m — oo

6 Universal relations

Although the explicit computations of our results requires the knowledge of the
data distribution, we can establish universal relations (valid in the framework of
our approximation) which are independent of this density. We restrict ourselves
to the full Bayesian scenario where all quantities are averaged over the prior
distribution of true functions f*. The uncertainty of the prediction at a point
x is measured by the posterior variance ep(z) = E(f(x|D) — f(z))?. Bayesian
generalization errors defined as e, = [eB(z)](s,p) for this scenario were com-
puted previously by Peter Sollich [7] under the assumption of a uniform input
distribution. Our results for this special case turn out to be identical to Sollich’s
result.

However, extending our framework to arbitrary input densities, we find that
the Bayesian generalization error and its empirical estimate e, g = % St len(zi)lp
are expressed by a single variational parameter of our model only. This can be
eliminated to give the following surprisingly simple relation

_ €t,B

€9.B = 1_ gt7B (11)
where &, 5 = ¢¢,5/0” and £, 5 = ¢4,5/0”. Fig. 2 displays simulation results for
Wiener process regression with Gaussian noise of variance o2 = 0.01. We used
two different input distributions p(z) = 1 (squares) and p(z) = 2z (triangles),
z € [0,1]. The number m of example data is indicated by arrows. Eq. (11) is
represented by the bold line and holds for sufficiently large m.
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7 Future work

In the future, we will extend our method in the following directions:

— Obviously, our method is not restricted to a regression model but can also

be directly generalized to other likelihoods such as the classification case [4
8]. A further application to Support Vector Machines should be possible.
We will establish further universal relations between different error measures
for the more realistic case of a fixed (unknown) function f*(z). It will be
interesting if such relations may be useful to construct new methods for
model selection, i.e. hyper-parameter estimation.

By computing the influence of the first neglected term in Eq. (6) which is
quadratic in H,,— H?, we will estimate the region in which our approximation
is valid.

Y
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