Abstract
We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernardo, J. M. and A.F. Smith (1994). Bayesian Theory. John Wiley & Sons.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, N.Y.: Oxford University Press.
Cressie, N. A. (1991). Statistics for Spatial Data. New York: Wiley.
Csató, L. and M. Opper (2001). Sparse representation for Gaussian process models. In T. K. Leen, T. G. Diettrich, and V. Tresp (Eds.), NIPS, Volume 13. The MIT Press. http://www.ncrg.aston.ac.uk/Papers.
[Evans et al. 2000]_Evans, D. J., D. Cornford, and I. T. Nabney (2000). Structured neural network modelling of multi-valued functions for wind retrieval from scatterometer measurements. Neurocomputing Letters 30, 23–30.
Kimeldorf, G. and G. Wahba (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33, 82–95.
[Nabney et al. 2000]_Nabney, I. T., D. Cornford, and C. K. I. Williams (2000). Bayesian inference for wind field retrieval. Neurocomputing Letters 30, 3–11.
Offiler, D. (1994). The calibration of ERS-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology 11, 1002–1017.
Opper, M. (1998). A Bayesian approach to online learning. See Saad [1998], pp. 363–378.
Opper, M. and O. Winther (1999). Gaussian processes and SVM: Mean field results and leave-one-out estimator. In A. Smola, P. Bartlett, B. Schölkopf, and C. Schuurmans (Eds.), Advances in Large Margin Classifiers, pp. 43–65. Cambridge, MA: The MIT Press.
Saad, D. (1998). On-Line Learning in Neural Networks. Cambridge Univ. Press.
Stoffelen, A. and D. Anderson (1997a). Ambiguity removal and assimiliation of scatterometer data. Quarterly Journal of the Royal Meteorological Society 123, 491–518.
Stoffelen, A. and D. Anderson (1997b). Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research 102, 5767–5780.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Csató, L., Cornford, D., Opper, M. (2001). Online Approximations for Wind-Field Models. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_43
Download citation
DOI: https://doi.org/10.1007/3-540-44668-0_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42486-4
Online ISBN: 978-3-540-44668-2
eBook Packages: Springer Book Archive