Skip to main content

Online Approximations for Wind-Field Models

  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 2001 (ICANN 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2130))

Included in the following conference series:

Abstract

We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernardo, J. M. and A.F. Smith (1994). Bayesian Theory. John Wiley & Sons.

    Google Scholar 

  2. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York, N.Y.: Oxford University Press.

    Google Scholar 

  3. Cressie, N. A. (1991). Statistics for Spatial Data. New York: Wiley.

    MATH  Google Scholar 

  4. Csató, L. and M. Opper (2001). Sparse representation for Gaussian process models. In T. K. Leen, T. G. Diettrich, and V. Tresp (Eds.), NIPS, Volume 13. The MIT Press. http://www.ncrg.aston.ac.uk/Papers.

  5. [Evans et al. 2000]_Evans, D. J., D. Cornford, and I. T. Nabney (2000). Structured neural network modelling of multi-valued functions for wind retrieval from scatterometer measurements. Neurocomputing Letters 30, 23–30.

    Article  Google Scholar 

  6. Kimeldorf, G. and G. Wahba (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33, 82–95.

    Article  MATH  MathSciNet  Google Scholar 

  7. [Nabney et al. 2000]_Nabney, I. T., D. Cornford, and C. K. I. Williams (2000). Bayesian inference for wind field retrieval. Neurocomputing Letters 30, 3–11.

    Article  Google Scholar 

  8. Offiler, D. (1994). The calibration of ERS-1 satellite scatterometer winds. Journal of Atmospheric and Oceanic Technology 11, 1002–1017.

    Article  Google Scholar 

  9. Opper, M. (1998). A Bayesian approach to online learning. See Saad [1998], pp. 363–378.

    Google Scholar 

  10. Opper, M. and O. Winther (1999). Gaussian processes and SVM: Mean field results and leave-one-out estimator. In A. Smola, P. Bartlett, B. Schölkopf, and C. Schuurmans (Eds.), Advances in Large Margin Classifiers, pp. 43–65. Cambridge, MA: The MIT Press.

    Google Scholar 

  11. Saad, D. (1998). On-Line Learning in Neural Networks. Cambridge Univ. Press.

    Google Scholar 

  12. Stoffelen, A. and D. Anderson (1997a). Ambiguity removal and assimiliation of scatterometer data. Quarterly Journal of the Royal Meteorological Society 123, 491–518.

    Article  Google Scholar 

  13. Stoffelen, A. and D. Anderson (1997b). Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research 102, 5767–5780.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Csató, L., Cornford, D., Opper, M. (2001). Online Approximations for Wind-Field Models. In: Dorffner, G., Bischof, H., Hornik, K. (eds) Artificial Neural Networks — ICANN 2001. ICANN 2001. Lecture Notes in Computer Science, vol 2130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44668-0_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-44668-0_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42486-4

  • Online ISBN: 978-3-540-44668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics