Skip to main content

Approximating Minimum Cocolourings

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

  • 441 Accesses

Abstract

A cocolouring of a graph G is a partition of the vertex set of G such that each set of the partition is either a clique or an independent set in G. Some special cases of the minimum cocolouring problem are of particular interest.

We provide polynomial-time algorithms to approximate a mimimum cocolouring on graphs, partially ordered sets and sequences. In particular, we obtain an efficient algorithm to approximate within a factor of 1.71 a minimum partition of a partially ordered set into chains and antichains, and a minimum partition of a sequence into increasing and decreasing subsequences.

The work of the first author was done while he was at the Centro de Modelamiento Matemático, Universidad de Chile and UMR 2071-CNRS, supported by FONDAP and while he was a visiting postdoc at DIMATIA-ITI partially supported by GAČR 201/99/0242 and by the Ministry of Education of the Czech Republic as project LN00A056. Also this work was supported by Netherlands Organization for Scientific Research (NWO grant 047.008.006.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, M. Krivelevich, AND B. Sudakov, Subgraphs with a large cochromatic number, J. Graph Theory, 25 (1997), pp. 295–297.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Brandstädt AND D. Kratsch, On partitions of permutations into increasing and decreasing subsequences, Elektron. Informationsverarb. Kybernet., 22 (1986), pp. 263–273.

    MATH  MathSciNet  Google Scholar 

  3. A. Brandstädt, V. B. Le, AND J. P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1999.

    Google Scholar 

  4. I. Broere AND M. Burger, Critically cochromatic graphs, J. Graph Theory, 13 (1989), pp. 23–28.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Cheriyan AND R. Ravi, Approximation algorithms for network problems, 1998, manuscript.

    Google Scholar 

  6. P. Erdős AND J. Gimbel, Some problems and results in cochromatic theory, in Quo vadis, graph theory?, North-Holland, Amsterdam, 1993, pp. 261–264.

    Chapter  Google Scholar 

  7. P. Erdős, J. Gimbel, AND D. Kratsch, Some extremal results in cochromatic and dichromatic theory, J. Graph Theory, 15 (1991), pp. 579–585.

    Article  MathSciNet  Google Scholar 

  8. P. Erdős, J. Gimbel, AND H. J. Straight, Chromatic number versus cochromatic number in graphs with bounded clique number, European J. Combin., 11 (1990), pp. 235–240.

    MathSciNet  Google Scholar 

  9. U. Feige AND J. Kilian, Zero knowledge and the chromatic number, J. Comput. System Sci., 57 (1998), pp. 187–199. Complexity 96—The Eleventh Annual IEEE Conference on Computational Complexity(Philadelphia, PA).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Frank, On chain and antichain families of a partially ordered set, J. Combin. Theory Ser. B, 29 (1980), pp. 176–184.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Gimbel, D. Kratsch, AND L. Stewart, On cocolourings and cochromatic numbers of graphs, Discrete Appl. Math., 48 (1994), pp. 111–127.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Gimbel AND H. J. Straight, Some topics in cochromatic theory, Graphs Combin., 3 (1987), pp. 255–265.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    MATH  Google Scholar 

  14. C. Greene, Some partitions associated with a partially ordered set, J. Combinatorial Theory Ser. A, 20 (1976), pp. 69–79.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Greene AND D. J. Kleitman, The structure of Sperner k-families, J. Combinatorial Theory Ser. A, 20 (1976), pp. 41–68.

    Article  MathSciNet  Google Scholar 

  16. M. Grötschel, L. Lovász, AND A. Schrijver, Geometric algorithms and combinatorial optimization, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  17. D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp. 256–278. Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

    Article  MATH  MathSciNet  Google Scholar 

  18. L. M. Lesniak-Foster AND H. J. Straight, The cochromatic number of a graph, Ars Combin., 3 (1977), pp. 39–45.

    MATH  MathSciNet  Google Scholar 

  19. L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975), pp. 383–390.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. J. Straight, Note on the cochromatic number of several surfaces, J. Graph Theory, 4 (1980), pp. 115–117.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Wagner, Monotonic coverings of finite sets, Elektron. Informationsverarb. Kybernet., 20 (1984), pp. 633–639.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Kratsch, D., Novelli, JC. (2001). Approximating Minimum Cocolourings. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics