Abstract
Let H 3 ≃ ( Z 3; + ) be the three-element group {a,a 2,e} with a 3 = e; N 0=N∪{0}; L <·> - the class of all first-order formulas of the signature <·>. For any recursively enumerable (r.e.) set K⊆N we effectively define an N 0 × N 0-matrix P k over H 3 and consider the Rees matrix semigroup C K = M(H 3, N 0, N 0, P K). The following theorem presents the main result of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clifford, A., Preston G.: The Algebraic Theory of Semigroups, Vol. 1. American Mathematical Society, Providence, R.I. (1964)
A.I.Mal’cev, A.: Algebraic Systems. Berlin (1973)
Petrich, M., Reilly, N.: Completely Regular Semigroups. Canadian Mathematical Society, Series of Monographs and Advanced Texts 23, A Willey-Interscience Publication, New York (1999)
Rozenblat, B.: Diophantine theories of free inverse semigroups. Sibirsk. Math. Zh.26 (1985) 101–107. English transl.: Siberian Math. J., Consultants Bureau, New-York-London (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rozenblat, B.V. (2001). On Recursively Enumerable Subsets of N and Rees Matrix Semigroups over (Z3 ; + ). In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_44
Download citation
DOI: https://doi.org/10.1007/3-540-44669-9_44
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42487-1
Online ISBN: 978-3-540-44669-9
eBook Packages: Springer Book Archive