Abstract
A description of the property of monotonicity of Boolean functions using propositional calculus is presented, which allows to use #SAT algorithms for computing Dedekind numbers. Using an obvious modification of Davis-Putnam satisfiability algorithm, Dedekind numbers until the seventh have been calculated. Standard arithmetization of propositional logic allows to deduce Kisielewicz’s formula in more transparent way.
Supported in part by Estonian Science Foundation grant no. 3056
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc. Comput. Mach. 7 (1960) 201–215
R. Dedekind, R.: Über Zerlegungen von Zahlen durch ihre grossten gemeinsamen Teiler. Festschrift der Technischen Hochschule zu Braunschweig bei Gelegenheit der 69 Versammlung Deutscher Naturforscher und Ärzte (1897) 1–40
Kisielewicz, A.: A solution of Dedekind’s problem on the number of isotone Boolean functions. J. reine angew. Math. 386 (1988) 139–144
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tombak, M., Isotamm, A., Tamme, T. (2001). On Logical Method for Counting Dedekind Numbers. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_48
Download citation
DOI: https://doi.org/10.1007/3-540-44669-9_48
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42487-1
Online ISBN: 978-3-540-44669-9
eBook Packages: Springer Book Archive