Skip to main content

A Simple Shortest Path Algorithm with Linear Average Time

  • Conference paper
  • First Online:
Algorithms — ESA 2001 (ESA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2161))

Included in the following conference series:

Abstract

We present a simple shortest path algorithm. If the input lengths are positive and uniformly distributed, the algorithm runs in linear time. The worst-case running time of the algorithm is O(m + n log C), where n and m are the number of vertices and arcs of the input graph, respectively, and C is the ratio of the largest and the smallest nonzero arc length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

    Google Scholar 

  2. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for the Shortest Path Problem. J. Assoc. Comput. Mach., 37(2):213–223, April 1990.

    Google Scholar 

  3. A. Brodnik, S. Carlsson, J. Karlsson, and J. I. Munro. Worst case constant time priority queues. In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 523–528, 2001.

    Google Scholar 

  4. B. V. Cherkassky and A. V. Goldberg. Negative-Cycle Detection Algorithms. Math. Prog., 85:277–311, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experimental Evaluation. Math. Prog., 73:129–174, 1996.

    MathSciNet  Google Scholar 

  6. B. V. Cherkassky, A. V. Goldberg, and C. Silverstein. Buckets, Heaps, Lists, and Monotone Priority Queues. SIAM J. Comput., 28:1326–1346, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Chernoff. A Measure of Asymptotic Efficiency for Test of a Hypothesis Based on the Sum of Observations. Anals of Math. Stat., 23:493–509, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking. Information and Control, 70:32–53, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets. Oper. Res., 27:161–186, 1979.

    MATH  MathSciNet  Google Scholar 

  10. R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM, 12:632–633, 1969.

    Article  Google Scholar 

  11. R. B. Dial, F. Glover, D. Karney, and D. Klingman. A Computational Analysis of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees. Networks, 9:215–248, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numer. Math., 1:269–271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. A. Dinic. Economical algorithms for finding shortest paths in a network. In Yu.S. Popkov and B.L. Shmulyian, editors, Transportation Modeling Systems, pages 36–44. Institute for System Studies, Moscow, 1978. In Russian.

    Google Scholar 

  14. L. Ford. Network Flow Theory. Technical Report P-932, The Rand Corporation, 1956.

    Google Scholar 

  15. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  16. M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.

    MathSciNet  Google Scholar 

  17. M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. J. and Syst. Sci., 48:533–551, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. N. Gabow. Scaling Algorithms for Network Problems. J. of and Sys. Sci., 31:148–168, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3–79, 1988.

    MathSciNet  Google Scholar 

  20. F. Glover, R. Glover, and D. Klingman. Computational Study of an Improved Shortest Path Algorithm. Networks, 14:25–37, 1984.

    Article  Google Scholar 

  21. A. V. Goldberg and C. Silverstein. Implementations of Dijkstra’s Algorithm Based on Multi-Level Buckets. In P. M. Pardalos, D. W. Hearn, and W. W. Hages, editors, Lecture Notes in Economics and Mathematical System 450 (Refereed Proceedings), pages 292–327. Springer Verlag, 1997.

    Google Scholar 

  22. T. Hagerup. Improved Shortest Paths in the Word RAM. In 27th Int. Colloq. on Automata, Languages and Programming, Geneva, Switzerland, pages 61–72, 2000.

    Google Scholar 

  23. U. Meyer. Single-Source Shortest Paths on Arbitrary Directed Graphs in Linear Average Time. In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 797–806, 2001.

    Google Scholar 

  24. U. Meyer. Single-Source Shortest Paths on Arbitrary Directed Graphs in Linear Average Time. Technical Report MPI-I-2001-1-002, Max-Planck-Institut für Informatik, Saarbrüken, Germany, 2001.

    Google Scholar 

  25. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Google Scholar 

  26. K. Noshita. A Theorem on the Expected Complexity of Dijkstra’s Shortest Path Algorithm. J. Algorithms, 6:400–408, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Raman. Fast Algorithms for Shortest Paths and Sorting. Technical Report TR 96-06, King’s Colledge, London, 1996.

    Google Scholar 

  28. R. Raman. Priority Queues: Small, Monotone and Trans-Dichotomous. In Proc. 4th Annual European Symposium Algorithms, pages 121–137. Springer-Verlag, Lect. Notes in CS 1136, 1996.

    Google Scholar 

  29. R. Raman. Recent Results on Single-Source Shortest Paths Problem. SIGACT News, 28:81–87, 1997.

    Article  Google Scholar 

  30. R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

    Google Scholar 

  31. M. Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time. J. Assoc. Comput. Mach., 46:362–394, 1999.

    MATH  MathSciNet  Google Scholar 

  32. M. Thorup. On RAM Priority Queues. SIAM Journal on Computing, 30:86–109, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  33. F. B. Zhan and C. E. Noon. Shortest Path Algorithms: An Evaluation using Real Road Networks. Transp. Sci., 32:65–73, 1998.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V. (2001). A Simple Shortest Path Algorithm with Linear Average Time. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44676-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42493-2

  • Online ISBN: 978-3-540-44676-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics